期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Advanced Functional Electromagnetic Shielding Materials:A Review Based on Micro‑Nano Structure Interface Control of Biomass Cell Walls
1
作者 Yang Shi Mingjun Wu +14 位作者 Shengbo Ge Jianzhang Li Anoud Saud Alshammari Jing Luo mohammed a.amin Hua Qiu Jinxuan Jiang Yazeed M.Asiri Runzhou Huang Hua Hou Zeinhom M.El‑Bahy Zhanhu Guo Chong Jia Kaimeng Xu Xiangmeng Chen 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期98-134,共37页
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and... Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field. 展开更多
关键词 Biomass materials Electromagnetic interference shielding Micro-nano structure interface control CONDUCTIVITY
下载PDF
Role of dissolved oxygen reduction in improvement inhibition performance of ascorbic acid during copper corrosion in 0.50 mol/L sulphuric acid 被引量:5
2
作者 mohammed a.amin 《Chinese Chemical Letters》 SCIE CAS CSCD 2010年第3期341-345,共5页
The kinetics of dissolved O_2 reduction and hydrogen evolution reactions on copper surface was studied in naturally aerated and air and O_2-saturated 0.50 mol/L H_2SO_4 solutions using polarization measurements combin... The kinetics of dissolved O_2 reduction and hydrogen evolution reactions on copper surface was studied in naturally aerated and air and O_2-saturated 0.50 mol/L H_2SO_4 solutions using polarization measurements combined with the rotating disc electrode (RDE).The Koutecky-Levich plot indicated that the dissolved O_2 reduction at the copper electrode was an apparent four-electron process.A correlation between the presence of dissolved O_2 and the formation of Cu_2O,confirmed from XRD,was discussed. Ascorbic a... 展开更多
关键词 COPPER Sulphuric acid solutions Corrosion inhibition Ascorbic acid RDE O_2 reduction
下载PDF
Regulating microstructure and composition by carbonizing in-situ grown metal-organic frameworks on cotton fabrics for boosting electromagnetic wave absorption
3
作者 Jie Jin Hongsen Long +10 位作者 Hu Liu Yan Guo Tiantian Bai Ben Bin Xu mohammed a.amin Hua Qiu Mohamed H.Helal Chuntai Liu Changyu Shen Zeinhom M.El-Bahy Zhanhu Guo 《Nano Research》 SCIE EI CSCD 2024年第8期7290-7300,共11页
High-temperature carbonized metal-organic frameworks(MOFs)derivatives have demonstrated their superiority for promising electromagnetic wave(EMW)absorbers,but they still suffer from limited EMW absorption capacity and... High-temperature carbonized metal-organic frameworks(MOFs)derivatives have demonstrated their superiority for promising electromagnetic wave(EMW)absorbers,but they still suffer from limited EMW absorption capacity and narrow bandwidth.Considering the advantage of microstructure and chemical composition regulation for the design of EMW absorber,hierarchical heterostructured MoS_(2)/CoS_(2)-Co_(3)O_(4)@cabonized cotton fabric(CF)(MCC@CCF)is prepared by growing ZIF-67 MOFs onto CF surface,chemical etching,and carbonization.Aside from the dual loss mechanism of magnetic-dielectric multicomponent carbonized MOFs,chemical etching and carbonization process can effectively introduce abundant micro-gap structure that can result in better impedance matching and stronger absorption capacity via internal reflection,doped heteroatoms(Mo,N,S)to supply additional dipolar polarization loss,and numerous heterointerfaces among MoS_(2),CoS_(2),Co_(3)O_(4),and CCF that produce promoted conduction loss and interfacial polarization loss.Thus,a minimal reflection loss of−52.87 dB and a broadest effective absorption bandwidth of 6.88 GHz were achieved via tunning the sample thickness and filler loading,showing excellent EMW absorption performances.This research is of great value for guiding the research on MOFs derivatives based EMW absorbing materials. 展开更多
关键词 metal-organic frameworks hierarchical structure chemical etching SULFURIZATION electromagnetic wave absorption
原文传递
Construction of Nanophase Novel Coatings-Based Titanium for the Enhancement of Protein Adsorption 被引量:1
4
作者 Sahar A.Fadlallah mohammed a.amin Ghaida S.Alosaimi 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第3期243-252,共10页
In the recent years,biological nanostructures coatings have been incorporated into orthopedic and dental implants in order to accelerate osseointegration and reducing surgical restrictions.In the present work,chemical... In the recent years,biological nanostructures coatings have been incorporated into orthopedic and dental implants in order to accelerate osseointegration and reducing surgical restrictions.In the present work,chemical etching,anodization and metal doping surface modification methods were integrated in one strategy to fabricate innovative titanium surfaces denominated by titanium nanoporous,anodized titanium nanoporous,silver-anodized titanium nanoporous and gold-anodized titanium nanoporous.The stability properties of nanostructures-coated surfaces were elucidated using electrochemical impedance spectroscopy(EIS) after 7 days of immersion in simulated biological fluids.Morphology and chemical compositions of new surfaces were characterized by scanning electron microscope and energy-dispersive X-ray analysis.The EIS results and data fitting to the electrical equivalent circuit model demonstrated the influence of adsorption of bovine serum albumin on new surfaces as a function of protein concentration.Adsorption process was described by the very well-known model of the Langmuir adsorption isotherm.The thermodynamic parameter DGADS(-50 to 59 kJ mol^(-1)) is calculated,which supports the instantaneous adsorption of protein from biological fluids to new surfaces and refers to their good biocompatibility.Ultimately,this study explores new surface strategy to gain new implants as a means of improving clinical outcomes of patients undergoing orthopedic surgery. 展开更多
关键词 Titanium Nanoporous Surface modification Protein adsorption Electrochemical impedance spectroscopy(EIS)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部