期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Social Media-Based Surveillance Systems for Health Informatics Using Machine and Deep Learning Techniques:A Comprehensive Review and Open Challenges
1
作者 Samina Amin Muhammad Ali Zeb +3 位作者 Hani Alshahrani mohammed hamdi Mohammad Alsulami Asadullah Shaikh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1167-1202,共36页
Social media(SM)based surveillance systems,combined with machine learning(ML)and deep learning(DL)techniques,have shown potential for early detection of epidemic outbreaks.This review discusses the current state of SM... Social media(SM)based surveillance systems,combined with machine learning(ML)and deep learning(DL)techniques,have shown potential for early detection of epidemic outbreaks.This review discusses the current state of SM-based surveillance methods for early epidemic outbreaks and the role of ML and DL in enhancing their performance.Since,every year,a large amount of data related to epidemic outbreaks,particularly Twitter data is generated by SM.This paper outlines the theme of SM analysis for tracking health-related issues and detecting epidemic outbreaks in SM,along with the ML and DL techniques that have been configured for the detection of epidemic outbreaks.DL has emerged as a promising ML technique that adaptsmultiple layers of representations or features of the data and yields state-of-the-art extrapolation results.In recent years,along with the success of ML and DL in many other application domains,both ML and DL are also popularly used in SM analysis.This paper aims to provide an overview of epidemic outbreaks in SM and then outlines a comprehensive analysis of ML and DL approaches and their existing applications in SM analysis.Finally,this review serves the purpose of offering suggestions,ideas,and proposals,along with highlighting the ongoing challenges in the field of early outbreak detection that still need to be addressed. 展开更多
关键词 Social media EPIDEMIC machine learning deep learning health informatics PANDEMIC
下载PDF
A Secure and Efficient Cluster-Based Authentication Scheme for Internet of Things(IoTs) 被引量:1
2
作者 Kanwal Imran Nasreen Anjum +3 位作者 Abdullah Alghamdi Asadullah Shaikh mohammed hamdi Saeed Mahfooz 《Computers, Materials & Continua》 SCIE EI 2022年第1期1033-1052,共20页
IPv6 over Low PowerWireless Personal Area Network(6LoWPAN)provides IP connectivity to the highly constrained nodes in the Internet of Things(IoTs).6LoWPANallows nodeswith limited battery power and storage capacity to ... IPv6 over Low PowerWireless Personal Area Network(6LoWPAN)provides IP connectivity to the highly constrained nodes in the Internet of Things(IoTs).6LoWPANallows nodeswith limited battery power and storage capacity to carry IPv6 datagrams over the lossy and error-prone radio links offered by the IEEE 802.15.4 standard,thus acting as an adoption layer between the IPv6 protocol and IEEE 802.15.4 network.The data link layer of IEEE 802.15.4 in 6LoWPAN is based on AES(Advanced Encryption Standard),but the 6LoWPANstandard lacks and has omitted the security and privacy requirements at higher layers.The sensor nodes in 6LoWPANcan join the network without requiring the authentication procedure.Therefore,from security perspectives,6LoWPAN is vulnerable to many attacks such as replay attack,Man-in-the-Middle attack,Impersonation attack,and Modification attack.This paper proposes a secure and efficient cluster-based authentication scheme(CBAS)for highly constrained sensor nodes in 6LoWPAN.In this approach,sensor nodes are organized into a cluster and communicate with the central network through a dedicated sensor node.The main objective of CBAS is to provide efficient and authentic communication among the 6LoWPAN nodes.To ensure the low signaling overhead during the registration,authentication,and handover procedures,we also introduce lightweight and efficient registration,de-registration,initial authentication,and handover procedures,when a sensor node or group of sensor nodes join or leave a cluster.Our security analysis shows that the proposed CBAS approach protects against various security attacks,including Identity Confidentiality attack,Modification attack,Replay attack,Man-in-the-middle attack,and Impersonation attack.Our simulation experiments show that CBAS has reduced the registration delay by 11%,handoff authentication delay by 32%,and signaling cost by 37%compared to the SGMS(Secure GroupMobility Scheme)and LAMS(Light-Wight Authentication&Mobility Scheme). 展开更多
关键词 IOT cyber security security attacks authentication delay handover delay signaling cost 6LoWPAN
下载PDF
A Hybrid Feature Selection Framework for Predicting Students Performance 被引量:1
3
作者 Maryam Zaffar Manzoor Ahmed Hashmani +4 位作者 Raja Habib KS Quraishi Muhammad Irfan Samar Alqhtani mohammed hamdi 《Computers, Materials & Continua》 SCIE EI 2022年第1期1893-1920,共28页
Student performance prediction helps the educational stakeholders to take proactive decisions and make interventions,for the improvement of quality of education and to meet the dynamic needs of society.The selection o... Student performance prediction helps the educational stakeholders to take proactive decisions and make interventions,for the improvement of quality of education and to meet the dynamic needs of society.The selection of features for student’s performance prediction not only plays significant role in increasing prediction accuracy,but also helps in building the strategic plans for the improvement of students’academic performance.There are different feature selection algorithms for predicting the performance of students,however the studies reported in the literature claim that there are different pros and cons of existing feature selection algorithms in selection of optimal features.In this paper,a hybrid feature selection framework(using feature-fusion)is designed to identify the significant features and associated features with target class,to predict the performance of students.The main goal of the proposed hybrid feature selection is not only to improve the prediction accuracy,but also to identify optimal features for building productive strategies for the improvement in students’academic performance.The key difference between proposed hybrid feature selection framework and existing hybrid feature selection framework,is two level feature fusion technique,with the utilization of cosine-based fusion.Whereas,according to the results reported in existing literature,cosine similarity is considered as the best similarity measure among existing similarity measures.The proposed hybrid feature selection is validated on four benchmark datasets with variations in number of features and number of instances.The validated results confirm that the proposed hybrid feature selection framework performs better than the existing hybrid feature selection framework,existing feature selection algorithms in terms of accuracy,f-measure,recall,and precision.Results reported in presented paper show that the proposed approach gives more than 90%accuracy on benchmark dataset that is better than the results of existing approach. 展开更多
关键词 Educational data mining feature selection hybrid feature selection
下载PDF
An Architecture Supporting Intelligent Mobile Healthcare Using Human-Computer Interaction HCI Principles
4
作者 Mesfer Alrizq Shauban Ali Solangi +3 位作者 Abdullah Alghamdi Muhammad Ali Nizamani Muhammad Ali Memon mohammed hamdi 《Computer Systems Science & Engineering》 SCIE EI 2022年第2期557-569,共13页
Recent advancements in the Internet of Things IoT and cloud computing have paved the way for mobile Healthcare(mHealthcare)services.A patient within the hospital is monitored by several devices.Moreover,upon leaving t... Recent advancements in the Internet of Things IoT and cloud computing have paved the way for mobile Healthcare(mHealthcare)services.A patient within the hospital is monitored by several devices.Moreover,upon leaving the hospital,the patient can be remotely monitored whether directly using body wearable sensors or using a smartphone equipped with sensors to monitor different user-health parameters.This raises potential challenges for intelligent monitoring of patient's health.In this paper,an improved architecture for smart mHealthcare is proposed that is supported by HCI design principles.The HCI also provides the support for the User-Centric Design(UCD)for smart mHealthcare models.Furthermore,the HCI along with IoT's(Internet of Things)5-layered architecture has the potential of improving User Experience(UX)in mHealthcare design and help saving lives.The intelligent mHealthcare system is supported by the IoT sensing and communication layers and health care providers are supported by the application layer for the medical,behavioral,and health-related information.Health care providers and users are further supported by an intelligent layer performing critical situation assessment and performing a multi-modal communication using an intelligent assistant.The HCI design focuses on the ease-of-use,including user experience and safety,alarms,and error-resistant displays of the end-user,and improves user's experience and user satisfaction. 展开更多
关键词 Human computer interaction mhealthcare user-centric design sensor network nternet-of-things
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部