Traffic flow prediction in urban areas is essential in the IntelligentTransportation System (ITS). Short Term Traffic Flow (STTF) predictionimpacts traffic flow series, where an estimation of the number of vehicleswil...Traffic flow prediction in urban areas is essential in the IntelligentTransportation System (ITS). Short Term Traffic Flow (STTF) predictionimpacts traffic flow series, where an estimation of the number of vehicleswill appear during the next instance of time per hour. Precise STTF iscritical in Intelligent Transportation System. Various extinct systems aim forshort-term traffic forecasts, ensuring a good precision outcome which was asignificant task over the past few years. The main objective of this paper is topropose a new model to predict STTF for every hour of a day. In this paper,we have proposed a novel hybrid algorithm utilizing Principal ComponentAnalysis (PCA), Stacked Auto-Encoder (SAE), Long Short Term Memory(LSTM), and K-Nearest Neighbors (KNN) named PALKNN. Firstly, PCAremoves unwanted information from the dataset and selects essential features.Secondly, SAE is used to reduce the dimension of input data using onehotencoding so the model can be trained with better speed. Thirdly, LSTMtakes the input from SAE, where the data is sorted in ascending orderbased on the important features and generates the derived value. Finally,KNN Regressor takes information from LSTM to predict traffic flow. Theforecasting performance of the PALKNN model is investigated with OpenRoad Traffic Statistics dataset, Great Britain, UK. This paper enhanced thetraffic flow prediction for every hour of a day with a minimal error value.An extensive experimental analysis was performed on the benchmark dataset.The evaluated results indicate the significant improvement of the proposedPALKNN model over the recent approaches such as KNN, SARIMA, LogisticRegression, RNN, and LSTM in terms of root mean square error (RMSE)of 2.07%, mean square error (MSE) of 4.1%, and mean absolute error (MAE)of 2.04%.展开更多
文摘Traffic flow prediction in urban areas is essential in the IntelligentTransportation System (ITS). Short Term Traffic Flow (STTF) predictionimpacts traffic flow series, where an estimation of the number of vehicleswill appear during the next instance of time per hour. Precise STTF iscritical in Intelligent Transportation System. Various extinct systems aim forshort-term traffic forecasts, ensuring a good precision outcome which was asignificant task over the past few years. The main objective of this paper is topropose a new model to predict STTF for every hour of a day. In this paper,we have proposed a novel hybrid algorithm utilizing Principal ComponentAnalysis (PCA), Stacked Auto-Encoder (SAE), Long Short Term Memory(LSTM), and K-Nearest Neighbors (KNN) named PALKNN. Firstly, PCAremoves unwanted information from the dataset and selects essential features.Secondly, SAE is used to reduce the dimension of input data using onehotencoding so the model can be trained with better speed. Thirdly, LSTMtakes the input from SAE, where the data is sorted in ascending orderbased on the important features and generates the derived value. Finally,KNN Regressor takes information from LSTM to predict traffic flow. Theforecasting performance of the PALKNN model is investigated with OpenRoad Traffic Statistics dataset, Great Britain, UK. This paper enhanced thetraffic flow prediction for every hour of a day with a minimal error value.An extensive experimental analysis was performed on the benchmark dataset.The evaluated results indicate the significant improvement of the proposedPALKNN model over the recent approaches such as KNN, SARIMA, LogisticRegression, RNN, and LSTM in terms of root mean square error (RMSE)of 2.07%, mean square error (MSE) of 4.1%, and mean absolute error (MAE)of 2.04%.