期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Wavelet Based Detection of Outliers in Volatility Time Series Models 被引量:1
1
作者 Khudhayr A.Rashedi mohd tahir ismail +1 位作者 Abdeslam Serroukh SAl wadi 《Computers, Materials & Continua》 SCIE EI 2022年第8期3835-3847,共13页
We introduce a new wavelet based procedure for detecting outliers in financial discrete time series.The procedure focuses on the analysis of residuals obtained from a model fit,and applied to the Generalized Autoregre... We introduce a new wavelet based procedure for detecting outliers in financial discrete time series.The procedure focuses on the analysis of residuals obtained from a model fit,and applied to the Generalized Autoregressive Conditional Heteroskedasticity(GARCH)like model,but not limited to these models.We apply the Maximal-Overlap Discrete Wavelet Transform(MODWT)to the residuals and compare their wavelet coefficients against quantile thresholds to detect outliers.Our methodology has several advantages over existing methods that make use of the standard Discrete Wavelet Transform(DWT).The series sample size does not need to be a power of 2 and the transform can explore any wavelet filter and be run up to the desired level.Simulated wavelet quantiles from a Normal and Student t-distribution are used as threshold for the maximum of the absolute value of wavelet coefficients.The performance of the procedure is illustrated and applied to two real series:the closed price of the Saudi Stock market and the S&P 500 index respectively.The efficiency of the proposed method is demonstrated and can be considered as a distinct important addition to the existing methods. 展开更多
关键词 GARCH models MODWT wavelet transform outlier detections quantile threshold
下载PDF
Forecasting Stock Volatility Using Wavelet-based Exponential Generalized Autoregressive Conditional Heteroscedasticity Methods
2
作者 Tariq T.Alshammari mohd tahir ismail +4 位作者 Nawaf N.Hamadneh S.Al Wadi Jamil J.Jaber Nawa Alshammari Mohammad H.Saleh 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期2589-2601,共13页
In this study,we proposed a new model to improve the accuracy of fore-casting the stock market volatility pattern.The hypothesized model was validated empirically using a data set collected from the Saudi Arabia stock... In this study,we proposed a new model to improve the accuracy of fore-casting the stock market volatility pattern.The hypothesized model was validated empirically using a data set collected from the Saudi Arabia stock Exchange(Tada-wul).The data is the daily closed price index data from August 2011 to December 2019 with 2027 observations.The proposed forecasting model combines the best maximum overlapping discrete wavelet transform(MODWT)function(Bl14)and exponential generalized autoregressive conditional heteroscedasticity(EGARCH)model.The results show the model's ability to analyze stock market data,highlight important events that contain the most volatile data,and improve forecast accuracy.The results were compared from a number of mathematical mod-els,which are the non-linear spectral model,autoregressive integrated moving aver-age(ARIMA)model and EGARCH model.The performance of the forecasting model will be evaluated based on some of error functions such as Mean absolute percentage error(MAPE),Mean absolute scaled error(MASE)and Root means squared error(RMSE). 展开更多
关键词 Predictive analytics mathematical models volatility index EGARCH model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部