Topological indices(TIs)have been practiced for distinct wide-ranging physicochemical applications,especially used to characterize and model the chemical structures of various molecular compounds such as dendrimers,na...Topological indices(TIs)have been practiced for distinct wide-ranging physicochemical applications,especially used to characterize and model the chemical structures of various molecular compounds such as dendrimers,nanotubes and neural networks with respect to their certain properties such as solubility,chemical stability and low cytotoxicity.Dendrimers are prolonged artificially synthesized or amalgamated natural macromolecules with a sequential layer of branches enclosing a central core.A present-day trend in mathematical and computational chemistry is the characterization of molecular structure by applying topological approaches,including numerical graph invariants.Among topological descriptors,Zagreb connection indices(ZCIs)have much importance.This manuscript involves the establishment of general results to calculate ZCIs,namely first ZCI(FZCI),second ZCI(SZCI),third ZCI(TZCI),modified FZCI,modified SZCI and modified TZCI of two special types of dendrimers nanostars,namely,poly propylene imine octamin(PPIO)dendrimer and poly(propyl)ether imine(PPEtIm)dendrimer.Furthermore,we provide the numerical and graphical comparative analysis of our calculated results for both types of dendrimers with each other.展开更多
The problem of investigating the minimum set of landmarks consisting of auto-machines(Robots)in a connected network is studied with the concept of location number ormetric dimension of this network.In this paper,we st...The problem of investigating the minimum set of landmarks consisting of auto-machines(Robots)in a connected network is studied with the concept of location number ormetric dimension of this network.In this paper,we study the latest type of metric dimension called as local fractional metric dimension(LFMD)and find its upper bounds for generalized Petersen networks GP(n,3),where n≥7.For n≥9.The limiting values of LFMD for GP(n,3)are also obtained as 1(bounded)if n approaches to infinity.展开更多
文摘Topological indices(TIs)have been practiced for distinct wide-ranging physicochemical applications,especially used to characterize and model the chemical structures of various molecular compounds such as dendrimers,nanotubes and neural networks with respect to their certain properties such as solubility,chemical stability and low cytotoxicity.Dendrimers are prolonged artificially synthesized or amalgamated natural macromolecules with a sequential layer of branches enclosing a central core.A present-day trend in mathematical and computational chemistry is the characterization of molecular structure by applying topological approaches,including numerical graph invariants.Among topological descriptors,Zagreb connection indices(ZCIs)have much importance.This manuscript involves the establishment of general results to calculate ZCIs,namely first ZCI(FZCI),second ZCI(SZCI),third ZCI(TZCI),modified FZCI,modified SZCI and modified TZCI of two special types of dendrimers nanostars,namely,poly propylene imine octamin(PPIO)dendrimer and poly(propyl)ether imine(PPEtIm)dendrimer.Furthermore,we provide the numerical and graphical comparative analysis of our calculated results for both types of dendrimers with each other.
基金funded by the Deanship of Scientific Research at Jouf University under Grant No.DSR-2021-03-0301supported by the Higher Education Commission of Pakistan through the National Research Program for Universities Grant No.20-16188/NRPU/R&D/HEC/20212021.
文摘The problem of investigating the minimum set of landmarks consisting of auto-machines(Robots)in a connected network is studied with the concept of location number ormetric dimension of this network.In this paper,we study the latest type of metric dimension called as local fractional metric dimension(LFMD)and find its upper bounds for generalized Petersen networks GP(n,3),where n≥7.For n≥9.The limiting values of LFMD for GP(n,3)are also obtained as 1(bounded)if n approaches to infinity.