期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
SNR and RSSI Based an Optimized Machine Learning Based Indoor Localization Approach:Multistory Round Building Scenario over LoRa Network
1
作者 muhammad Ayoub Kamal muhammad mansoor alam +1 位作者 Aznida Abu Bakar Sajak Mazliham Mohd Su’ud 《Computers, Materials & Continua》 SCIE EI 2024年第8期1927-1945,共19页
In situations when the precise position of a machine is unknown,localization becomes crucial.This research focuses on improving the position prediction accuracy over long-range(LoRa)network using an optimized machine ... In situations when the precise position of a machine is unknown,localization becomes crucial.This research focuses on improving the position prediction accuracy over long-range(LoRa)network using an optimized machine learning-based technique.In order to increase the prediction accuracy of the reference point position on the data collected using the fingerprinting method over LoRa technology,this study proposed an optimized machine learning(ML)based algorithm.Received signal strength indicator(RSSI)data from the sensors at different positions was first gathered via an experiment through the LoRa network in a multistory round layout building.The noise factor is also taken into account,and the signal-to-noise ratio(SNR)value is recorded for every RSSI measurement.This study concludes the examination of reference point accuracy with the modified KNN method(MKNN).MKNN was created to more precisely anticipate the position of the reference point.The findings showed that MKNN outperformed other algorithms in terms of accuracy and complexity. 展开更多
关键词 Indoor localization MKNN LoRa machine learning classification RSSI SNR localization
下载PDF
AI-Driven Learning Management Systems:Modern Developments, Challenges and Future Trends during theAge of ChatGPT
2
作者 Sameer Qazi muhammad Bilal Kadri +4 位作者 muhammad Naveed Bilal AKhawaja Sohaib Zia Khan muhammad mansoor alam Mazliham Mohd Su’ud 《Computers, Materials & Continua》 SCIE EI 2024年第8期3289-3314,共26页
COVID-19 pandemic restrictions limited all social activities to curtail the spread of the virus.The foremost and most prime sector among those affected were schools,colleges,and universities.The education system of en... COVID-19 pandemic restrictions limited all social activities to curtail the spread of the virus.The foremost and most prime sector among those affected were schools,colleges,and universities.The education system of entire nations had shifted to online education during this time.Many shortcomings of Learning Management Systems(LMSs)were detected to support education in an online mode that spawned the research in Artificial Intelligence(AI)based tools that are being developed by the research community to improve the effectiveness of LMSs.This paper presents a detailed survey of the different enhancements to LMSs,which are led by key advances in the area of AI to enhance the real-time and non-real-time user experience.The AI-based enhancements proposed to the LMSs start from the Application layer and Presentation layer in the form of flipped classroom models for the efficient learning environment and appropriately designed UI/UX for efficient utilization of LMS utilities and resources,including AI-based chatbots.Session layer enhancements are also required,such as AI-based online proctoring and user authentication using Biometrics.These extend to the Transport layer to support real-time and rate adaptive encrypted video transmission for user security/privacy and satisfactory working of AI-algorithms.It also needs the support of the Networking layer for IP-based geolocation features,the Virtual Private Network(VPN)feature,and the support of Software-Defined Networks(SDN)for optimum Quality of Service(QoS).Finally,in addition to these,non-real-time user experience is enhanced by other AI-based enhancements such as Plagiarism detection algorithms and Data Analytics. 展开更多
关键词 Learning management systems chatbots ChatGPT online education Internet of Things(IoT) artificial intelligence(AI) convolutional neural networks natural language processing
下载PDF
A Systematic Literature Review of Machine Learning and Deep Learning Approaches for Spectral Image Classification in Agricultural Applications Using Aerial Photography
3
作者 Usman Khan muhammad Khalid Khan +4 位作者 muhammad Ayub Latif muhammad Naveed muhammad mansoor alam Salman A.Khan Mazliham Mohd Su’ud 《Computers, Materials & Continua》 SCIE EI 2024年第3期2967-3000,共34页
Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unma... Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unmanned Aerial Vehicles(UAVs),has captured considerable attention.One encouraging aspect is their combination with machine learning and deep learning algorithms,which have demonstrated remarkable outcomes in image classification.As a result of this powerful amalgamation,the adoption of spectral images has experienced exponential growth across various domains,with agriculture being one of the prominent beneficiaries.This paper presents an extensive survey encompassing multispectral and hyperspectral images,focusing on their applications for classification challenges in diverse agricultural areas,including plants,grains,fruits,and vegetables.By meticulously examining primary studies,we delve into the specific agricultural domains where multispectral and hyperspectral images have found practical use.Additionally,our attention is directed towards utilizing machine learning techniques for effectively classifying hyperspectral images within the agricultural context.The findings of our investigation reveal that deep learning and support vector machines have emerged as widely employed methods for hyperspectral image classification in agriculture.Nevertheless,we also shed light on the various issues and limitations of working with spectral images.This comprehensive analysis aims to provide valuable insights into the current state of spectral imaging in agriculture and its potential for future advancements. 展开更多
关键词 Machine learning deep learning unmanned aerial vehicles multi-spectral images image recognition object detection hyperspectral images aerial photography
下载PDF
A Survey of Lung Nodules Detection and Classification from CT Scan Images
4
作者 Salman Ahmed Fazli Subhan +2 位作者 Mazliham Mohd Su’ud muhammad mansoor alam Adil Waheed 《Computer Systems Science & Engineering》 2024年第6期1483-1511,共29页
In the contemporary era,the death rate is increasing due to lung cancer.However,technology is continuously enhancing the quality of well-being.To improve the survival rate,radiologists rely on Computed Tomography(CT)s... In the contemporary era,the death rate is increasing due to lung cancer.However,technology is continuously enhancing the quality of well-being.To improve the survival rate,radiologists rely on Computed Tomography(CT)scans for early detection and diagnosis of lung nodules.This paper presented a detailed,systematic review of several identification and categorization techniques for lung nodules.The analysis of the report explored the challenges,advancements,and future opinions in computer-aided diagnosis CAD systems for detecting and classifying lung nodules employing the deep learning(DL)algorithm.The findings also highlighted the usefulness of DL networks,especially convolutional neural networks(CNNs)in elevating sensitivity,accuracy,and specificity as well as overcoming false positives in the initial stages of lung cancer detection.This paper further presented the integral nodule classification stage,which stressed the importance of differentiating between benign and malignant nodules for initial cancer diagnosis.Moreover,the findings presented a comprehensive analysis of multiple techniques and studies for nodule classification,highlighting the evolution of methodologies from conventional machine learning(ML)classifiers to transfer learning and integrated CNNs.Interestingly,while accepting the strides formed by CAD systems,the review addressed persistent challenges. 展开更多
关键词 Lung nodules computed tomography scans lung cancer deep learning
下载PDF
Artificial Intelligence Based Reliable Load Balancing Framework in Software-Defined Networks
5
作者 Mohammad Riyaz Belgaum Fuead Ali +3 位作者 Zainab Alansari Shahrulniza Musa muhammad mansoor alam M.S.Mazliham 《Computers, Materials & Continua》 SCIE EI 2022年第1期251-266,共16页
Software-defined networking(SDN)plays a critical role in transforming networking from traditional to intelligent networking.The increasing demand for services from cloud users has increased the load on the network.An ... Software-defined networking(SDN)plays a critical role in transforming networking from traditional to intelligent networking.The increasing demand for services from cloud users has increased the load on the network.An efficient system must handle various loads and increasing needs representing the relationships and dependence of businesses on automated measurement systems and guarantee the quality of service(QoS).Themultiple paths from source to destination give a scope to select an optimal path by maintaining an equilibrium of load using some best algorithms.Moreover,the requests need to be transferred to reliable network elements.To address SDN’s current and future challenges,there is a need to know how artificial intelligence(AI)optimization techniques can efficiently balance the load.This study aims to explore two artificial intelligence optimization techniques,namely Ant Colony Optimization(ACO)and Particle Swarm Optimization(PSO),used for load balancing in SDN.Further,we identified that a modification to the existing optimization technique could improve the performance by using a reliable link and node to form the path to reach the target node and improve load balancing.Finally,we propose a conceptual framework for SDN futurology by evaluating node and link reliability,which can balance the load efficiently and improve QoS in SDN. 展开更多
关键词 Ant colony optimization load balancing particle swarm optimization quality of service reliability software-defined networking
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部