期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An LSTM-Based Malware Detection Using Transfer Learning 被引量:1
1
作者 Zhangjie Fu Yongjie Ding musaazi godfrey 《Journal of Cyber Security》 2021年第1期11-28,共18页
Mobile malware occupies a considerable proportion of cyberattacks.With the update of mobile device operating systems and the development of software technology,more and more new malware keep appearing.The emergence of... Mobile malware occupies a considerable proportion of cyberattacks.With the update of mobile device operating systems and the development of software technology,more and more new malware keep appearing.The emergence of new malware makes the identification accuracy of existing methods lower and lower.There is an urgent need for more effective malware detection models.In this paper,we propose a new approach to mobile malware detection that is able to detect newly-emerged malware instances.Firstly,we build and train the LSTM-based model on original benign and malware samples investigated by both static and dynamic analysis techniques.Then,we build a generative adversarial network to generate augmented examples,which can emulate the characteristics of newly-emerged malware.At last,we use the augmented examples to retrain the 4th and 5th layers of the LSTM network and the last fully connected layer so that it can discriminate against newly-emerged malware.Actual experiments show that our malware detection achieved a classification accuracy of 99.94%when tested on augmented samples and 86.5%with the samples of newly-emerged malware on real data. 展开更多
关键词 Malware detection long short term memory networks generative adversarial networks transfer learning augmented examples
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部