In this paper, we present a new voltage-mode biquad filter that uses a six-terminal CMOS fully differential current conveyor(FDCCII). The FDCCII with only 23 transistors in its structure and operating at ± 1.5 V,...In this paper, we present a new voltage-mode biquad filter that uses a six-terminal CMOS fully differential current conveyor(FDCCII). The FDCCII with only 23 transistors in its structure and operating at ± 1.5 V, is based on a class AB fully differential buffer. The proposed filter has the facility to tune gain, ωo and Q. A circuit division circuit(CDC) is employed to digitally control the FDCCII block. This digitally controlled FDCCII is used to realize a new reconfigurable fully-differential integrator and differentiator. We performed SPICE simulations to determine the performance of all circuits using CMOS 0.25 μm technology.展开更多
基金UGC for providing valuable support in form of the NET-JRF grant
文摘In this paper, we present a new voltage-mode biquad filter that uses a six-terminal CMOS fully differential current conveyor(FDCCII). The FDCCII with only 23 transistors in its structure and operating at ± 1.5 V, is based on a class AB fully differential buffer. The proposed filter has the facility to tune gain, ωo and Q. A circuit division circuit(CDC) is employed to digitally control the FDCCII block. This digitally controlled FDCCII is used to realize a new reconfigurable fully-differential integrator and differentiator. We performed SPICE simulations to determine the performance of all circuits using CMOS 0.25 μm technology.