Nanofiber membranes(NFMs) have become attractive candidates for next-generation flexible transparent materials due to their exceptional flexibility and breathability. However, improving the transmittance of NFMs is a ...Nanofiber membranes(NFMs) have become attractive candidates for next-generation flexible transparent materials due to their exceptional flexibility and breathability. However, improving the transmittance of NFMs is a great challenge due to the enormous reflection and incredibly poor transmission generated by the nanofiber-air interface. In this research, we report a general strategy for the preparation of flexible temperature-responsive transparent(TRT) membranes,which achieves a rapid transformation of NFMs from opaque to highly transparent under a narrow temperature window. In this process, the phase change material eicosane is coated on the surface of the polyurethane nanofibers by electrospray technology. When the temperature rises to 37 ℃, eicosane rapidly completes the phase transition and establishes the light transmission path between the nanofibers, preventing light loss from reflection at the nanofiber-air interface. The resulting TRT membrane exhibits high transmittance(> 90%), and fast response(5 s). This study achieves the first TRT transition of NFMs, offering a general strategy for building highly transparent nanofiber materials, shaping the future of next-generation intelligent temperature monitoring, anti-counterfeiting measures, and other high-performance devices.展开更多
[Objectives]To analyze the changes in of forest carbon sink and forestry economic development,provide reference for relevant management decisions,ecological governance and resource and environment management,and promo...[Objectives]To analyze the changes in of forest carbon sink and forestry economic development,provide reference for relevant management decisions,ecological governance and resource and environment management,and promote the development of green low-carbon economy in China.[Methods]Based on the data of six forest resource inventories from 1989 to 2018 and related studies,the comprehensive evaluation model of forest carbon sink and forestry economic development,the coupling degree model of forest carbon sink and forestry economic development,and the coupling coordination degree model of forest carbon sink and forestry economic development were adopted.The coupling degree of forest carbon sink and forestry economic development from 1992 to 2018 was analyzed.Stepwise regression and ARIMA model were used to analyze the influencing factors and lagging characteristics of forest carbon sink.The coupling degree between forest carbon sink and forestry economic development in China from 2019 to 2030 was predicted by autoregression and ADF test.The coupling between forest carbon sink and forestry economic development in China and its long-term change characteristics were also discussed in this study.[Results](i)The investment of ecological construction and protection,the actual investment of forestry key ecological projects,GDP and the import of forest products had a significant impact on forest resources carbon stock.The total output value of forestry industry,the actually completed investment of forestry key ecological projects and the export volume of forest products had a significant impact on the forest carbon sink,and the actually completed investment of forestry key ecological projects has the greatest impact on the two.(ii)The impact of actually completed investment of forestry key ecological projects had a lag of 2 years on the forest resources carbon stock and a lag of 1 year on the forest carbon sink.When investing in forest carbon sink,it is necessary to make a good plan in advance,and do a good job in forest resources management and time optimization.(iii)From 1992 to 2018,the coupling degree of forest resources carbon stock,forest carbon sink and long-term development of forestry economy in China was gradually increasing.Although there were some fluctuations in the middle time,the coupling degree of forest resources carbon stock and the long-term development of forestry economy increased by 9.24%annually,and the degree of coupling coordination increased from"serious imbalance"in 1992 to"high-quality coordination"in 2018.From 1993 to 2018,the coupling degree of forest carbon sink and long-term development of forestry economy increased by 9.63%annually,slightly faster than the coupling coordination degree of forest resources carbon stock and long-term development of forestry economy.The coordination level also rose from level 2 in 1993 to level 10 in 2018.(iv)The prediction shows that the coupling coordination degree of forest resources carbon stock,forest carbon sink and the long-term development of forestry economy would increase from 2019 to 2030.The coupling coordination degree(D)values of both were close to 1,the coordination level was also 10 for a long time,and the degree of coupling coordination was also maintained at the"high-quality coordination"level for a long time.[Conclusions]Forest has multiple benefits of society,economy and ecology,and forest carbon sink is only a benefit output.The long-term coupling analysis of forest carbon sink and forestry economic development is a key point to multiple benefit analysis.The analysis shows that the spillover effect and co-evolution effect of forest carbon sink in China are significant.From 1992 to 2018,the coupling coordination degree of forest carbon sink and forestry economic development was gradually rising.The prediction analysis also indicate that the coupling coordination degree between the forest carbon sink and the long-term development of forestry economy will remain at the level of"high-quality coordination"for a long time from 2019 to 2030.Therefore,improving the level of forest management and maintaining the current trend of increasing forest resources are the key to achieving the goal of carbon peaking and carbon neutrality in China.展开更多
Electrochemical co-reduction of nitrate(NO_(3)^(-))and carbon dioxide(CO_(2))has been widely regarded as a promising route to produce urea under ambient conditions,however the yield rate of urea has remained limited.H...Electrochemical co-reduction of nitrate(NO_(3)^(-))and carbon dioxide(CO_(2))has been widely regarded as a promising route to produce urea under ambient conditions,however the yield rate of urea has remained limited.Here,we report an atomically ordered intermetallic pallium-zinc(PdZn)electrocatalyst comprising a high density of PdZn pairs for boosting urea electrosynthesis.It is found that Pd and Zn are responsible for the adsorption and activation of NO_(3)^(-)and CO_(2),respectively,and thus the co-adsorption and co-activation NO_(3)^(-)and CO_(2) are achieved in ordered PdZn pairs.More importantly,the ordered and well-defined PdZn pairs provide a dual-site geometric structure conducive to the key C-N coupling with a low kinetical barrier,as demonstrated on both operando measurements and theoretical calculations.Consequently,the PdZn electrocatalyst displays excellent performance for the co-reduction to generate urea with a maximum urea Faradaic efficiency of 62.78%and a urea yield rate of 1274.42μg mg^(-1) h^(-1),and the latter is 1.5-fold larger than disordered pairs in PdZn alloys.This work paves new pathways to boost urea electrosynthesis via constructing ordered dual-metal pairs.展开更多
Developing non-precious metal-based bifunctional electrocatalysts capable for both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is essential to achieve efficient water electrolysis for mass hydrog...Developing non-precious metal-based bifunctional electrocatalysts capable for both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is essential to achieve efficient water electrolysis for mass hydrogen production,however it remains challenging.Here,we report the synthesis of hierarchical nanorod arrays comprising core-shell structured P-doped NiMoO4@NiFe-coordination polymer(denoted as P-NiMoO4@NiFeCP)as bifunctional electrocatalysts for water electrolysis.Furthermore,we systematically investigate the influence of NiFeCP shell thickness on electrocatalytic activity,manifesting the presence of strong interfacial synergetic effect between P-NiMoO4 and NiFeCP for boosting both the HER and OER.With advantageous hierarchical architectures and unique core-shell structures,optimized P-NiMoO_(4)@NiFeCP-7.3(7.3 is the shell thickness in nm)requires overpotentials of merely 256 and 297 mV to yield a current density of 1000 mA·cm^(−2)for the HER and OER in 1 M KOH,respectively.More importantly,it can serve as a bifunctional electrocatalyst for efficient and sustainable overall water electrolysis,delivering large current densities of 500 and 1000 mA·cm^(−2)at low cell voltages of 1.804 and 1.865 V,along with high stability of over 500 h at 1000 mA·cm−2,demonstrating the great potential of this electrocatalyst towards practical applications.展开更多
为评价水曲柳(Fraxinus mandschurica)和落叶松(Larix olgensis)人工纯林与混交林的固碳能力,在黑龙江省尚志市帽儿山地区选择24年生的林分,测定水曲柳和落叶松纯林与混交林的碳储量。结果表明:水曲柳和落叶松混交林生态系统碳储量(246....为评价水曲柳(Fraxinus mandschurica)和落叶松(Larix olgensis)人工纯林与混交林的固碳能力,在黑龙江省尚志市帽儿山地区选择24年生的林分,测定水曲柳和落叶松纯林与混交林的碳储量。结果表明:水曲柳和落叶松混交林生态系统碳储量(246.15 t C/hm2)大于落叶松纯林(232.01 t C/hm2)和水曲柳纯林(211.86 t C/hm2),但差异均不显著(P> 0.05)。在三种人工林中,土壤层和乔木层碳储量分别占生态系统碳储量的71.6%~80.1%和17.3%~24.5%,为生态系统的主要碳库。混交林土壤层碳储量大于落叶松纯林和水曲柳纯林,但差异均不显著(P>0.05)。混交林乔木层碳储量与落叶松纯林和水曲柳纯林相比均表现增加,且与水曲柳纯林差异显著(P <0.05)。混交林和落叶松纯林的凋落物层碳储量明显高于水曲柳纯林(P <0.05),而水曲柳纯林林下植被层的碳储量显著高于混交林和落叶松纯林(P <0.05)。结果表明,水曲柳和落叶松混交林与纯林相比能增加生态系统碳固定,适合于营造碳汇林。展开更多
A facile and environmentally friendly visible-light-induced three-component reaction of α-diazoesters,cyclic ethers and Na SCN to construct organic thiocyanates has been developed at room temperature. This reaction c...A facile and environmentally friendly visible-light-induced three-component reaction of α-diazoesters,cyclic ethers and Na SCN to construct organic thiocyanates has been developed at room temperature. This reaction could occur under photocatalyst-and additive-free conditions to afford a number of organic thiocyanates with moderate to good yield and favorable functional group tolerance.展开更多
The purpose of this study was to compare cell growth characteristics,ciliated cell differentiation,and function of human nasal epithelial cells established as explant outgrowth cultures or dissociated tissue cultures....The purpose of this study was to compare cell growth characteristics,ciliated cell differentiation,and function of human nasal epithelial cells established as explant outgrowth cultures or dissociated tissue cultures.Human nasal mucosa of the uncinate process was obtained by endoscopy and epithelial cell cultures were established by explant outgrowth or dissociated tissue culture methods.Epithelial cell growth characteristics were observed by inverted phase contrast microscopy.Ciliated cell differentiation was detected byβ-tubulin IV and ZO-1 immunocytochemistry.Basal and ATP-stimulated ciliary beat frequency(CBF)was measured using a high-speed digital microscopic imaging system.Both the explant and dissociated tissue cultures established as monolayers with tight junctions and differentiated cell composition,with both types of cultures comprising ciliated and non-ciliated epithelial cells.Fibroblasts were also frequently found in explant cultures but rarely seen in dissociated tissue cultures.In both culture systems,the highest ciliated cell density appeared at 7th–10th culture day and declined with time,with the lifespan of ciliated cells ranging from 14 to 21 days.Overall,10%of the cells in explant cultures and 20%of the cells in the dissociated tissue cultures were ciliated.These two cultures demonstrated similar ciliary beat frequency values at baseline(7.78±1.99 Hz and 7.91±2.52 Hz,respectively)and reacted equivalently following stimulation with 100μM ATP.The results of this study indicate that both the explant outgrowth and dissociated tissue culture techniques are suitable for growing well-differentiated nasal ciliated and non-ciliated cells,which have growth characteristics and ciliary activity similar to those of nasal epithelial cells in vivo.展开更多
Background: Giant cell tumors (GCTs) are benign, locally aggressive tumors. We exalnined the rate of local rectirrence of spinal GCTs and sought to identify recurrence factors in patients who underwent surgery. Met...Background: Giant cell tumors (GCTs) are benign, locally aggressive tumors. We exalnined the rate of local rectirrence of spinal GCTs and sought to identify recurrence factors in patients who underwent surgery. Methods: Between 1995 and 2014, 94 mobile spine GCT patients were treated at our hospital, comprising 43 male and 51 female patients with an average age of 33.4 years. Piecemeal intralesional spondylectomy and total en bloc spondylectomy (TES) were performed. Radiotherapy was suggested for recurrent or residual GCT cases. Since denosumab was not available before 2014 in our country, only interferon and/or zoledronic acid was suggested. Results: Of the 94 patients, four underwent conservative treatment and 90 underwent operations. Seventy-five patients (79.8%) were followed tip for a minimum of 24 months or until death. The median follow-up duration was 75.3 months. The overall recurrence rate was 37.3%. Ten patients (13.3%) died before the last follow-up (rnedian: 18.5 months). Two patients (2.6%) developed osteogenic sarcoma. The local recurrence rate was 80.0% (24/30) in patients who underwent intralesional curettage, 8.8% (3/34) in patients who underwent extracapsular piecemeal spondylectomy,and 0 (0/9) in patients who underwent TES. The risk factors for local recurrence were lesions located in the cervical spine (P = 0.049), intralesional curettage (P 〈 0.001 ), repeated surgeries (P 0.014), and malignancy (P 〈 0.001 ). Malignant transformation was a significant risk factor for death (P 〈 0.001 ). Conclusions: Cervical spinal tumors, curettage, and nonintact tumors were risk l;actors for local recurrence. Intralesional curettage and malignancy were the most important significant factors for local rectirrence and death, respectively.展开更多
Sulfur-containing organic compounds display wide applications in the field of materials science,synthetic chemistry,and pharmaceutical industry.Thus,numerous synthetic strategies have been developed for the synthesis ...Sulfur-containing organic compounds display wide applications in the field of materials science,synthetic chemistry,and pharmaceutical industry.Thus,numerous synthetic strategies have been developed for the synthesis of sulfur-containing compounds in synthetic chemistry.In recent years,the utilization of sulfinic acids as versatile synthons has emerged as attractive and powerful approach to access various organosulfur compounds through sulfonylation,sulfinylation or sulfenylation reactions.In this review,we summarized the recent progress in the construction of various sulfur-containing compounds from sulfininc acids.Selected examples of substrates and the related reaction mechanisms are described here.This review intends to provide readers a comprehensive understanding on the synthesis of sulfur-containing molecules from sulfinic acids and provide help for future synthetic research.展开更多
基金financially supported by National Key Research and Development Program of China (2022YFB3804903, 2022YFB3804900)the National Natural Science Foundation of China (No. 52273052)+2 种基金the Fundamental Research Funds for the Central Universities (No. 2232023Y01)the Program of Shanghai Academic/Technology Research Leader (No. 21XD1420100)the International Cooperation Fund of Science and Technology Commission of Shanghai Municipality (No. 21130750100)。
文摘Nanofiber membranes(NFMs) have become attractive candidates for next-generation flexible transparent materials due to their exceptional flexibility and breathability. However, improving the transmittance of NFMs is a great challenge due to the enormous reflection and incredibly poor transmission generated by the nanofiber-air interface. In this research, we report a general strategy for the preparation of flexible temperature-responsive transparent(TRT) membranes,which achieves a rapid transformation of NFMs from opaque to highly transparent under a narrow temperature window. In this process, the phase change material eicosane is coated on the surface of the polyurethane nanofibers by electrospray technology. When the temperature rises to 37 ℃, eicosane rapidly completes the phase transition and establishes the light transmission path between the nanofibers, preventing light loss from reflection at the nanofiber-air interface. The resulting TRT membrane exhibits high transmittance(> 90%), and fast response(5 s). This study achieves the first TRT transition of NFMs, offering a general strategy for building highly transparent nanofiber materials, shaping the future of next-generation intelligent temperature monitoring, anti-counterfeiting measures, and other high-performance devices.
基金Supported by National Natural Science Foundation of China(72173011).
文摘[Objectives]To analyze the changes in of forest carbon sink and forestry economic development,provide reference for relevant management decisions,ecological governance and resource and environment management,and promote the development of green low-carbon economy in China.[Methods]Based on the data of six forest resource inventories from 1989 to 2018 and related studies,the comprehensive evaluation model of forest carbon sink and forestry economic development,the coupling degree model of forest carbon sink and forestry economic development,and the coupling coordination degree model of forest carbon sink and forestry economic development were adopted.The coupling degree of forest carbon sink and forestry economic development from 1992 to 2018 was analyzed.Stepwise regression and ARIMA model were used to analyze the influencing factors and lagging characteristics of forest carbon sink.The coupling degree between forest carbon sink and forestry economic development in China from 2019 to 2030 was predicted by autoregression and ADF test.The coupling between forest carbon sink and forestry economic development in China and its long-term change characteristics were also discussed in this study.[Results](i)The investment of ecological construction and protection,the actual investment of forestry key ecological projects,GDP and the import of forest products had a significant impact on forest resources carbon stock.The total output value of forestry industry,the actually completed investment of forestry key ecological projects and the export volume of forest products had a significant impact on the forest carbon sink,and the actually completed investment of forestry key ecological projects has the greatest impact on the two.(ii)The impact of actually completed investment of forestry key ecological projects had a lag of 2 years on the forest resources carbon stock and a lag of 1 year on the forest carbon sink.When investing in forest carbon sink,it is necessary to make a good plan in advance,and do a good job in forest resources management and time optimization.(iii)From 1992 to 2018,the coupling degree of forest resources carbon stock,forest carbon sink and long-term development of forestry economy in China was gradually increasing.Although there were some fluctuations in the middle time,the coupling degree of forest resources carbon stock and the long-term development of forestry economy increased by 9.24%annually,and the degree of coupling coordination increased from"serious imbalance"in 1992 to"high-quality coordination"in 2018.From 1993 to 2018,the coupling degree of forest carbon sink and long-term development of forestry economy increased by 9.63%annually,slightly faster than the coupling coordination degree of forest resources carbon stock and long-term development of forestry economy.The coordination level also rose from level 2 in 1993 to level 10 in 2018.(iv)The prediction shows that the coupling coordination degree of forest resources carbon stock,forest carbon sink and the long-term development of forestry economy would increase from 2019 to 2030.The coupling coordination degree(D)values of both were close to 1,the coordination level was also 10 for a long time,and the degree of coupling coordination was also maintained at the"high-quality coordination"level for a long time.[Conclusions]Forest has multiple benefits of society,economy and ecology,and forest carbon sink is only a benefit output.The long-term coupling analysis of forest carbon sink and forestry economic development is a key point to multiple benefit analysis.The analysis shows that the spillover effect and co-evolution effect of forest carbon sink in China are significant.From 1992 to 2018,the coupling coordination degree of forest carbon sink and forestry economic development was gradually rising.The prediction analysis also indicate that the coupling coordination degree between the forest carbon sink and the long-term development of forestry economy will remain at the level of"high-quality coordination"for a long time from 2019 to 2030.Therefore,improving the level of forest management and maintaining the current trend of increasing forest resources are the key to achieving the goal of carbon peaking and carbon neutrality in China.
基金supported by the National Natural Science Foundation of China(22379100,U21A20312)the Shenzhen Science and Technology Program(Grant No.20231121200418001)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(2022B1515120084)the Key Project of Department of Education of Guangdong Province(2023ZDZX3020)。
文摘Electrochemical co-reduction of nitrate(NO_(3)^(-))and carbon dioxide(CO_(2))has been widely regarded as a promising route to produce urea under ambient conditions,however the yield rate of urea has remained limited.Here,we report an atomically ordered intermetallic pallium-zinc(PdZn)electrocatalyst comprising a high density of PdZn pairs for boosting urea electrosynthesis.It is found that Pd and Zn are responsible for the adsorption and activation of NO_(3)^(-)and CO_(2),respectively,and thus the co-adsorption and co-activation NO_(3)^(-)and CO_(2) are achieved in ordered PdZn pairs.More importantly,the ordered and well-defined PdZn pairs provide a dual-site geometric structure conducive to the key C-N coupling with a low kinetical barrier,as demonstrated on both operando measurements and theoretical calculations.Consequently,the PdZn electrocatalyst displays excellent performance for the co-reduction to generate urea with a maximum urea Faradaic efficiency of 62.78%and a urea yield rate of 1274.42μg mg^(-1) h^(-1),and the latter is 1.5-fold larger than disordered pairs in PdZn alloys.This work paves new pathways to boost urea electrosynthesis via constructing ordered dual-metal pairs.
基金the Shenzhen Science and Technology Program(Nos.SGDX20201103095802006,RCYX20200714114535052,JCYJ20190808150001775,and JCYJ20190808143007479)the National Natural Science Foundation of China(Nos.U21A20312 and 21975162).
文摘Developing non-precious metal-based bifunctional electrocatalysts capable for both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is essential to achieve efficient water electrolysis for mass hydrogen production,however it remains challenging.Here,we report the synthesis of hierarchical nanorod arrays comprising core-shell structured P-doped NiMoO4@NiFe-coordination polymer(denoted as P-NiMoO4@NiFeCP)as bifunctional electrocatalysts for water electrolysis.Furthermore,we systematically investigate the influence of NiFeCP shell thickness on electrocatalytic activity,manifesting the presence of strong interfacial synergetic effect between P-NiMoO4 and NiFeCP for boosting both the HER and OER.With advantageous hierarchical architectures and unique core-shell structures,optimized P-NiMoO_(4)@NiFeCP-7.3(7.3 is the shell thickness in nm)requires overpotentials of merely 256 and 297 mV to yield a current density of 1000 mA·cm^(−2)for the HER and OER in 1 M KOH,respectively.More importantly,it can serve as a bifunctional electrocatalyst for efficient and sustainable overall water electrolysis,delivering large current densities of 500 and 1000 mA·cm^(−2)at low cell voltages of 1.804 and 1.865 V,along with high stability of over 500 h at 1000 mA·cm−2,demonstrating the great potential of this electrocatalyst towards practical applications.
文摘为评价水曲柳(Fraxinus mandschurica)和落叶松(Larix olgensis)人工纯林与混交林的固碳能力,在黑龙江省尚志市帽儿山地区选择24年生的林分,测定水曲柳和落叶松纯林与混交林的碳储量。结果表明:水曲柳和落叶松混交林生态系统碳储量(246.15 t C/hm2)大于落叶松纯林(232.01 t C/hm2)和水曲柳纯林(211.86 t C/hm2),但差异均不显著(P> 0.05)。在三种人工林中,土壤层和乔木层碳储量分别占生态系统碳储量的71.6%~80.1%和17.3%~24.5%,为生态系统的主要碳库。混交林土壤层碳储量大于落叶松纯林和水曲柳纯林,但差异均不显著(P>0.05)。混交林乔木层碳储量与落叶松纯林和水曲柳纯林相比均表现增加,且与水曲柳纯林差异显著(P <0.05)。混交林和落叶松纯林的凋落物层碳储量明显高于水曲柳纯林(P <0.05),而水曲柳纯林林下植被层的碳储量显著高于混交林和落叶松纯林(P <0.05)。结果表明,水曲柳和落叶松混交林与纯林相比能增加生态系统碳固定,适合于营造碳汇林。
基金supported by the program of Science and Technology International Cooperation Project of Qinghai Province (No. 2022-HZ-813)the Youth Innovation and Technology Project of High School in Shandong Province (No. 2019KJC021)+1 种基金the Natural Science Foundation of Shandong Province (No. ZR2021MB065)the National Natural Science Foundation of China (No. 31900298)。
文摘A facile and environmentally friendly visible-light-induced three-component reaction of α-diazoesters,cyclic ethers and Na SCN to construct organic thiocyanates has been developed at room temperature. This reaction could occur under photocatalyst-and additive-free conditions to afford a number of organic thiocyanates with moderate to good yield and favorable functional group tolerance.
基金supported by the National Science Fund for Distinguished Young Scholars(Grant No.81025007)National Natural Science Foundation of China(Grant Nos.81100704,30973282)+4 种基金Beijing Natural Science Foundation(7131006),Ministry of Health Foundation(201202005)Beijing Nova Program(Z111107054511061)Specialized Research Fund for the Doctoral Program of Higher Education of China(20111107120004)The Capital Health Research and Development of Special(2011-1017-03)Science Foundation for High-Level Medical Talents of Beijing Health System(2009-02-007).
文摘The purpose of this study was to compare cell growth characteristics,ciliated cell differentiation,and function of human nasal epithelial cells established as explant outgrowth cultures or dissociated tissue cultures.Human nasal mucosa of the uncinate process was obtained by endoscopy and epithelial cell cultures were established by explant outgrowth or dissociated tissue culture methods.Epithelial cell growth characteristics were observed by inverted phase contrast microscopy.Ciliated cell differentiation was detected byβ-tubulin IV and ZO-1 immunocytochemistry.Basal and ATP-stimulated ciliary beat frequency(CBF)was measured using a high-speed digital microscopic imaging system.Both the explant and dissociated tissue cultures established as monolayers with tight junctions and differentiated cell composition,with both types of cultures comprising ciliated and non-ciliated epithelial cells.Fibroblasts were also frequently found in explant cultures but rarely seen in dissociated tissue cultures.In both culture systems,the highest ciliated cell density appeared at 7th–10th culture day and declined with time,with the lifespan of ciliated cells ranging from 14 to 21 days.Overall,10%of the cells in explant cultures and 20%of the cells in the dissociated tissue cultures were ciliated.These two cultures demonstrated similar ciliary beat frequency values at baseline(7.78±1.99 Hz and 7.91±2.52 Hz,respectively)and reacted equivalently following stimulation with 100μM ATP.The results of this study indicate that both the explant outgrowth and dissociated tissue culture techniques are suitable for growing well-differentiated nasal ciliated and non-ciliated cells,which have growth characteristics and ciliary activity similar to those of nasal epithelial cells in vivo.
文摘Background: Giant cell tumors (GCTs) are benign, locally aggressive tumors. We exalnined the rate of local rectirrence of spinal GCTs and sought to identify recurrence factors in patients who underwent surgery. Methods: Between 1995 and 2014, 94 mobile spine GCT patients were treated at our hospital, comprising 43 male and 51 female patients with an average age of 33.4 years. Piecemeal intralesional spondylectomy and total en bloc spondylectomy (TES) were performed. Radiotherapy was suggested for recurrent or residual GCT cases. Since denosumab was not available before 2014 in our country, only interferon and/or zoledronic acid was suggested. Results: Of the 94 patients, four underwent conservative treatment and 90 underwent operations. Seventy-five patients (79.8%) were followed tip for a minimum of 24 months or until death. The median follow-up duration was 75.3 months. The overall recurrence rate was 37.3%. Ten patients (13.3%) died before the last follow-up (rnedian: 18.5 months). Two patients (2.6%) developed osteogenic sarcoma. The local recurrence rate was 80.0% (24/30) in patients who underwent intralesional curettage, 8.8% (3/34) in patients who underwent extracapsular piecemeal spondylectomy,and 0 (0/9) in patients who underwent TES. The risk factors for local recurrence were lesions located in the cervical spine (P = 0.049), intralesional curettage (P 〈 0.001 ), repeated surgeries (P 0.014), and malignancy (P 〈 0.001 ). Malignant transformation was a significant risk factor for death (P 〈 0.001 ). Conclusions: Cervical spinal tumors, curettage, and nonintact tumors were risk l;actors for local recurrence. Intralesional curettage and malignancy were the most important significant factors for local rectirrence and death, respectively.
基金supported by the Youth Innovation Technology Project of Higher School in Shandong Province(No.2019KJC021)Qinghai Science and Technology Achievement Transformation Project(No.2019-SF-122)Qinghai Key Laboratory of Tibetan Medicine Research(No.2021-ZJ-Y03)。
文摘Sulfur-containing organic compounds display wide applications in the field of materials science,synthetic chemistry,and pharmaceutical industry.Thus,numerous synthetic strategies have been developed for the synthesis of sulfur-containing compounds in synthetic chemistry.In recent years,the utilization of sulfinic acids as versatile synthons has emerged as attractive and powerful approach to access various organosulfur compounds through sulfonylation,sulfinylation or sulfenylation reactions.In this review,we summarized the recent progress in the construction of various sulfur-containing compounds from sulfininc acids.Selected examples of substrates and the related reaction mechanisms are described here.This review intends to provide readers a comprehensive understanding on the synthesis of sulfur-containing molecules from sulfinic acids and provide help for future synthetic research.