A suitable interface between the electrode and electrolyte is crucial in achieving highly stable electrochemical performance for Li-ion batteries,as facile ionic transport is required.Intriguing research and developme...A suitable interface between the electrode and electrolyte is crucial in achieving highly stable electrochemical performance for Li-ion batteries,as facile ionic transport is required.Intriguing research and development have recently been conducted to form a stable interface between the electrode and electrolyte.Therefore,it is essential to investigate emerging knowledge and contextualize it.The nanoengineering of the electrode-electrolyte interface has been actively researched at the electrode/electrolyte and interphase levels.This review presents and summarizes some recent advances aimed at nanoengineering approaches to build a more stable electrode-electrolyte interface and assess the impact of each approach adopted.Furthermore,future perspectives on the feasibility and practicality of each approach will also be reviewed in detail.Finally,this review aids in projecting a more sustainable research pathway for a nanoengineered interphase design between electrode and electrolyte,which is pivotal for high-performance,thermally stable Li-ion batteries.展开更多
Developing anode materials with high specific capacity and cycling stability is vital for improving thin-film lithium-ion batteries.Thin-film zinc oxide(ZnO)holds promise due to its high specific capacity,but it suffe...Developing anode materials with high specific capacity and cycling stability is vital for improving thin-film lithium-ion batteries.Thin-film zinc oxide(ZnO)holds promise due to its high specific capacity,but it suffers from volume changes and structural stress during cycling,leading to poor battery performance.In this research,we ingeniously combined polytetrafluoroethylene(PTFE)with ZnO using a radio frequency(RF)magnetron co-sputtering method,ensuring a strong bond in the thin-film composite electrode.PTFE effectively reduced stress on the active material and mitigated volume change effects during Li^(+)ion intercalation and deintercalation.The composite thin films are thoroughly characterized using advanced techniques such as X-ray diffraction,scanning electron microscopy,and X-ray photoelectron spectroscopy for investigating correlations between material properties and electrochemical behaviors.Notably,the ZnO/PTFE thin-film electrode demonstrated an impressive specific capacity of 1305 mAh g^(-1)(=7116 mAh cm^(-3))at a 0.5C rate and a remarkable capacity retention of 82%from the 1st to the 100th cycle,surpassing the bare ZnO thin film(50%).This study provides valuable insights into using binders to stabilize active materials in thin-film batteries,enhancing battery performance.展开更多
基金supported by funding from Bavarian Center for Battery Technology(Baybatt,Hightech Agenda Bayern)and Bayerisch-Tschechische Hochschulagentur(BTHA)(BTHA-AP-202245,BTHA-AP-2023-5,and BTHA-AP-2023-12)supported by the University of Bayreuth-Deakin University Joint Ph.D.Program+1 种基金supported by the Regional Innovation Strategy(RIS)through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS-003)supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.RS2023-00213749)
文摘A suitable interface between the electrode and electrolyte is crucial in achieving highly stable electrochemical performance for Li-ion batteries,as facile ionic transport is required.Intriguing research and development have recently been conducted to form a stable interface between the electrode and electrolyte.Therefore,it is essential to investigate emerging knowledge and contextualize it.The nanoengineering of the electrode-electrolyte interface has been actively researched at the electrode/electrolyte and interphase levels.This review presents and summarizes some recent advances aimed at nanoengineering approaches to build a more stable electrode-electrolyte interface and assess the impact of each approach adopted.Furthermore,future perspectives on the feasibility and practicality of each approach will also be reviewed in detail.Finally,this review aids in projecting a more sustainable research pathway for a nanoengineered interphase design between electrode and electrolyte,which is pivotal for high-performance,thermally stable Li-ion batteries.
基金supported by Basic Research Program through the National Research Foundation of Korea(NRF),funded by the Ministry of Education(grant numbers:2021R1A6A1A03043682 and 2022R1A2C2008273)supported by Semiconductor-Secondary Battery Interfacing Platform Technology Development Project of NNFC+4 种基金supported by a National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIP)(NRF-2021R1A2B5B03002016 and NRF2021R1A2C1010797)supported by Regional Innovation Strategy(RIS)through the National Research Foundation of Korea(NRF)grant funded by the Ministry of Education(MOE)(2021RIS-003)supported by GRDC(Global Research Development Center)Cooperative Hub Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(MSIT)(RS-2023-00257595)supported by the Dongguk University Research Fund of 2023Korea Evaluation Institute of Industrial Technology grant funded by the Korean Government Ministry of Trade,Industry and Energy(RS-2022-00155706)
文摘Developing anode materials with high specific capacity and cycling stability is vital for improving thin-film lithium-ion batteries.Thin-film zinc oxide(ZnO)holds promise due to its high specific capacity,but it suffers from volume changes and structural stress during cycling,leading to poor battery performance.In this research,we ingeniously combined polytetrafluoroethylene(PTFE)with ZnO using a radio frequency(RF)magnetron co-sputtering method,ensuring a strong bond in the thin-film composite electrode.PTFE effectively reduced stress on the active material and mitigated volume change effects during Li^(+)ion intercalation and deintercalation.The composite thin films are thoroughly characterized using advanced techniques such as X-ray diffraction,scanning electron microscopy,and X-ray photoelectron spectroscopy for investigating correlations between material properties and electrochemical behaviors.Notably,the ZnO/PTFE thin-film electrode demonstrated an impressive specific capacity of 1305 mAh g^(-1)(=7116 mAh cm^(-3))at a 0.5C rate and a remarkable capacity retention of 82%from the 1st to the 100th cycle,surpassing the bare ZnO thin film(50%).This study provides valuable insights into using binders to stabilize active materials in thin-film batteries,enhancing battery performance.