CRISPR/Cas system has been utilized to rationally manipulate intracellular genes,and it has been engineered as versatile and efficient gene editing tools with precise site-specificity and excellent targeting ability f...CRISPR/Cas system has been utilized to rationally manipulate intracellular genes,and it has been engineered as versatile and efficient gene editing tools with precise site-specificity and excellent targeting ability for therapeutics,diagnostics,and bioimaging.Here,the evolution and application of CRISPR/Cas systems were sketched chronologically.Landmark works were exemplified to illustrate the design principles of CRISPR/Cas systems.Furthermore,the delivery vectors of CRISPR/Cas system especially DNA nanomaterials-based vectors were categorized and illuminated.DNA nanomaterials are suitable for CRISPR/Cas system delivery via base pairing due to its sequence programmability and biocompatibility.Then the applications of CRISPR/Cas in diagnosis and genomic imaging were highlighted.At the end of the review,the challenges and opportunities of CRISPR/Cas systems were deeply discussed.We envision that the grant advances on CRISPR/Cas systems will promote the development of interdisciplinary fields in chemistry,biology and medicine.展开更多
Self-assembly exists widely in natural living system and artificial synthetic material system.Administration of self-assemblies of artificial architectures in living cells can be used to explore the molecular physicoc...Self-assembly exists widely in natural living system and artificial synthetic material system.Administration of self-assemblies of artificial architectures in living cells can be used to explore the molecular physicochemical fundamentals and operating mechanisms of living system,and consequently promote the development of biomedicine.In order to mimic naturally occurring self-assemblies and realize controllable functions,great efforts have been devoted to constructing dynamic assembly of artificial architectures in living cells by responding to intracellular specific stimuli,which can be used to regulate morphology,behaviors and fate of living cells.This review highlights the recent progress on artificial self-assembly in living cells.The molecular fundamentals and characteristics of intracellular environment that can induce the self-assembly of artificial architectures are introduced,and the representative work on dynamic artificial self-assembly in living cells is sketched chronologically.Moreover,intracellular stimuli-mediated pathways of artificial assembly in living cells are categorized,biological effects caused by intracellular self-assembly are summarized,and biomedical applications focusing on therapy and imaging are described.In the end,the perspective and challenges of artificial self-assembly in living cells are fully discussed.It is believed that the grand advances on artificial self-assembly in living cells will contribute to elaborating the molecular mechanisms in cells,and further promoting the biologically and medically-related applications in the future.展开更多
基金supported in part by National Natural Science Foundation of China(Nos.22225505,21621004,21905196 and 31971305)Tianjin Natural Science Foundation(Basic Research Plan,No.18JCJQJC47600)National Key R&D Program of China(Nos.2018YFA0902300,2019YFA0905800)。
文摘CRISPR/Cas system has been utilized to rationally manipulate intracellular genes,and it has been engineered as versatile and efficient gene editing tools with precise site-specificity and excellent targeting ability for therapeutics,diagnostics,and bioimaging.Here,the evolution and application of CRISPR/Cas systems were sketched chronologically.Landmark works were exemplified to illustrate the design principles of CRISPR/Cas systems.Furthermore,the delivery vectors of CRISPR/Cas system especially DNA nanomaterials-based vectors were categorized and illuminated.DNA nanomaterials are suitable for CRISPR/Cas system delivery via base pairing due to its sequence programmability and biocompatibility.Then the applications of CRISPR/Cas in diagnosis and genomic imaging were highlighted.At the end of the review,the challenges and opportunities of CRISPR/Cas systems were deeply discussed.We envision that the grant advances on CRISPR/Cas systems will promote the development of interdisciplinary fields in chemistry,biology and medicine.
基金supported in part by the National Natural Science Foundation of China(21621004,31971305,21905196)Tianjin Natural Science Foundation(Basic Research Plan,18JCJQJC47600,19JCQNJC01900)。
文摘Self-assembly exists widely in natural living system and artificial synthetic material system.Administration of self-assemblies of artificial architectures in living cells can be used to explore the molecular physicochemical fundamentals and operating mechanisms of living system,and consequently promote the development of biomedicine.In order to mimic naturally occurring self-assemblies and realize controllable functions,great efforts have been devoted to constructing dynamic assembly of artificial architectures in living cells by responding to intracellular specific stimuli,which can be used to regulate morphology,behaviors and fate of living cells.This review highlights the recent progress on artificial self-assembly in living cells.The molecular fundamentals and characteristics of intracellular environment that can induce the self-assembly of artificial architectures are introduced,and the representative work on dynamic artificial self-assembly in living cells is sketched chronologically.Moreover,intracellular stimuli-mediated pathways of artificial assembly in living cells are categorized,biological effects caused by intracellular self-assembly are summarized,and biomedical applications focusing on therapy and imaging are described.In the end,the perspective and challenges of artificial self-assembly in living cells are fully discussed.It is believed that the grand advances on artificial self-assembly in living cells will contribute to elaborating the molecular mechanisms in cells,and further promoting the biologically and medically-related applications in the future.