Guava is one of the most important fruits in Pakistan,and is gradually boosting the economy of Pakistan.Guava production can be interrupted due to different diseases,such as anthracnose,algal spot,fruit fly,styler end...Guava is one of the most important fruits in Pakistan,and is gradually boosting the economy of Pakistan.Guava production can be interrupted due to different diseases,such as anthracnose,algal spot,fruit fly,styler end rot and canker.These diseases are usually detected and identified by visual observation,thus automatic detection is required to assist formers.In this research,a new technique was created to detect guava plant diseases using image processing techniques and computer vision.An automated system is developed to support farmers to identify major diseases in guava.We collected healthy and unhealthy images of different guava diseases from the field.Then image labeling was done with the help of an expert to differentiate between healthy and unhealthy fruit.The local binary pattern(LBP)was used for the extraction of features,and principal component analysis(PCA)was used for dimensionality reduction.Disease classification was carried out using multiple classifiers,including cubic support vector machine,Fine K-nearest neighbor(F-KNN),Bagged Tree and RUSBoosted Tree algorithms and achieved 100%accuracy for the diagnosis of fruit flies disease using Bagged Tree.However,the findings indicated that cubic support vector machines(C-SVM)was the best classifier for all guava disease mentioned in the dataset.展开更多
We investigate the influence of Sb-doping on the martensitic transformation and magnetocaloric effect in Mn(50)Ni(40)Sn(10-x)Sbx(x = 1, 2, 3, and 4) alloys. All the prepared samples exhibit a B2-type structure...We investigate the influence of Sb-doping on the martensitic transformation and magnetocaloric effect in Mn(50)Ni(40)Sn(10-x)Sbx(x = 1, 2, 3, and 4) alloys. All the prepared samples exhibit a B2-type structure with the space group F m3 m at room temperature. The substitution of Sb increases the valence electron concentration and decreases the unit cell volume. As a result, the magnetostructural transformation shifts rapidly towards higher temperatures as x increases.The changes in magnetic entropy under different magnetic field variations are explored around this transformation. The isothermal magnetization curves exhibit typical metamagnetic behavior, indicating that the magnetostructural transformation can be induced by a magnetic field. The tunable martensitic transformation and magnetic entropy changes suggest that Mn(50)Ni(40)Sn(10-x)Sbx alloys are attractive candidates for applications in solid-state refrigeration.展开更多
In this work,we tuned the magnetostructural transformation and the coupled magnetocaloric properties of Mn_(48-x)V_(x)Ni_(42)Sn_(10)(x=0,1,2,and 3)ferromagnetic shape memory alloys prepared by means of partial replace...In this work,we tuned the magnetostructural transformation and the coupled magnetocaloric properties of Mn_(48-x)V_(x)Ni_(42)Sn_(10)(x=0,1,2,and 3)ferromagnetic shape memory alloys prepared by means of partial replacement of Mn by V.It is observed that the martensitic transformation temperatures decrease with the increase of V content.The shift of the transition temperatures to lower temperatures driven by the applied field,the metamagnetic behavior,and the thermal hysteresis indicates the first-order nature for the magnetostructural transformation.The entropy changes with a magnetic field variation of 0-5 T are 15.2,18.8,and 24.3 J.kg^(-1).K^(-1)for the x=0,1,and 2 samples,respectively.The tunable martensitic transformation temperature,enhanced field driving capacity,and large entropy change suggest that Mn_(48-x)V_(x)Ni_(42)Sn_(10)alloys have a potential for applications in magnetic cooling refrigeration.展开更多
An investigation on the magnetostructural transformation and magnetocaloric properties of Ni48-xCo2Mn38+xSn12(x = 0, 1.0, 1.5, 2.0, and 2.5) ferromagnetic shape memory alloys is carried out. With the partial replac...An investigation on the magnetostructural transformation and magnetocaloric properties of Ni48-xCo2Mn38+xSn12(x = 0, 1.0, 1.5, 2.0, and 2.5) ferromagnetic shape memory alloys is carried out. With the partial replacement of Ni by Mn in the Ni_(48)Co2Mn38Sn12 alloy, the electron concentration decreases. As a result, the martensitic transformation temperature is decreased into the temperature window between the Curie-temperatures of austenite and martensite. Thus, the samples with x = 1.5 and 2.0 exhibit the magnetostructural transformation between the weak-magnetization martensite and ferromagnetic austenite at room temperature. The structural transformation can be induced not only by the temperature,but also by the magnetic field. Accompanied by the magnetic-field-induced magnetostructural transformation, a considerable magnetocaloric effect is observed. With the increase of x, the maximum entropy change decreases, but the effective magnetic cooling capacity increases.展开更多
基金This work is supported by the Deanship of Scientific Research at King Saud University through research Group No.RG-1441-379.
文摘Guava is one of the most important fruits in Pakistan,and is gradually boosting the economy of Pakistan.Guava production can be interrupted due to different diseases,such as anthracnose,algal spot,fruit fly,styler end rot and canker.These diseases are usually detected and identified by visual observation,thus automatic detection is required to assist formers.In this research,a new technique was created to detect guava plant diseases using image processing techniques and computer vision.An automated system is developed to support farmers to identify major diseases in guava.We collected healthy and unhealthy images of different guava diseases from the field.Then image labeling was done with the help of an expert to differentiate between healthy and unhealthy fruit.The local binary pattern(LBP)was used for the extraction of features,and principal component analysis(PCA)was used for dimensionality reduction.Disease classification was carried out using multiple classifiers,including cubic support vector machine,Fine K-nearest neighbor(F-KNN),Bagged Tree and RUSBoosted Tree algorithms and achieved 100%accuracy for the diagnosis of fruit flies disease using Bagged Tree.However,the findings indicated that cubic support vector machines(C-SVM)was the best classifier for all guava disease mentioned in the dataset.
基金supported by the National Natural Science Foundation of China(Grant Nos.51271093,51571121,11604148,and 51601092)the Fundamental Research Funds for the Central Universities,China(Grant Nos.30920140111010,30916011344,and 30916011345)+4 种基金Jiangsu Natural Science Foundation for Distinguished Young Scholars,China(Grant No.BK20140035)China Postdoctoral Science Foundation(Grant No.2016M591851)the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20160833 and BK20160829)Qing Lan Project,Six Talent Peaks Project in Jiangsu Province,Chinathe Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘We investigate the influence of Sb-doping on the martensitic transformation and magnetocaloric effect in Mn(50)Ni(40)Sn(10-x)Sbx(x = 1, 2, 3, and 4) alloys. All the prepared samples exhibit a B2-type structure with the space group F m3 m at room temperature. The substitution of Sb increases the valence electron concentration and decreases the unit cell volume. As a result, the magnetostructural transformation shifts rapidly towards higher temperatures as x increases.The changes in magnetic entropy under different magnetic field variations are explored around this transformation. The isothermal magnetization curves exhibit typical metamagnetic behavior, indicating that the magnetostructural transformation can be induced by a magnetic field. The tunable martensitic transformation and magnetic entropy changes suggest that Mn(50)Ni(40)Sn(10-x)Sbx alloys are attractive candidates for applications in solid-state refrigeration.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51601092,51571121,and 11604148)the Fundamental Research Funds for the Central Universities,China(Grant Nos.30916011344 and 30916011345)+5 种基金the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province,Chinathe Postdoctoral Science Foundation Funded Project(Grant No.2016M591851)the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20160833,20160829,and 20140035)the Qing Lan Project of Jiangsu Provincethe Priority Academic Program Development of Jiangsu Higher Education InstitutionsShanxi Scholarship Council of China(Grant No.2016-092)
文摘In this work,we tuned the magnetostructural transformation and the coupled magnetocaloric properties of Mn_(48-x)V_(x)Ni_(42)Sn_(10)(x=0,1,2,and 3)ferromagnetic shape memory alloys prepared by means of partial replacement of Mn by V.It is observed that the martensitic transformation temperatures decrease with the increase of V content.The shift of the transition temperatures to lower temperatures driven by the applied field,the metamagnetic behavior,and the thermal hysteresis indicates the first-order nature for the magnetostructural transformation.The entropy changes with a magnetic field variation of 0-5 T are 15.2,18.8,and 24.3 J.kg^(-1).K^(-1)for the x=0,1,and 2 samples,respectively.The tunable martensitic transformation temperature,enhanced field driving capacity,and large entropy change suggest that Mn_(48-x)V_(x)Ni_(42)Sn_(10)alloys have a potential for applications in magnetic cooling refrigeration.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51601092,51571121,and 11604148)the Fundamental Research Funds for the Central Universities,China(Grant Nos.30916011344 and 30916011345)+5 种基金Jiangsu Natural Science Foundation for Distinguished Young Scholars,China(Grant No.BK20140035)China Postdoctoral Science Foundation(Grant No.2016M591851)the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20160833 and BK20160829)Qing Lan Project of Jiangsu Province,ChinaPriority Academic Program Development of Jiangsu Higher Education Institutions,ChinaNMG–NJUST Joint Scholarship Program for Ishfaq Ahmad Shah(Student ID:914116020118)
文摘An investigation on the magnetostructural transformation and magnetocaloric properties of Ni48-xCo2Mn38+xSn12(x = 0, 1.0, 1.5, 2.0, and 2.5) ferromagnetic shape memory alloys is carried out. With the partial replacement of Ni by Mn in the Ni_(48)Co2Mn38Sn12 alloy, the electron concentration decreases. As a result, the martensitic transformation temperature is decreased into the temperature window between the Curie-temperatures of austenite and martensite. Thus, the samples with x = 1.5 and 2.0 exhibit the magnetostructural transformation between the weak-magnetization martensite and ferromagnetic austenite at room temperature. The structural transformation can be induced not only by the temperature,but also by the magnetic field. Accompanied by the magnetic-field-induced magnetostructural transformation, a considerable magnetocaloric effect is observed. With the increase of x, the maximum entropy change decreases, but the effective magnetic cooling capacity increases.