Fluorine owing to its inherently high electronegativity exhibits charge delocalization and ion dissociation capabilities;as a result,there has been an influx of research studies focused on the utilization of fluorides...Fluorine owing to its inherently high electronegativity exhibits charge delocalization and ion dissociation capabilities;as a result,there has been an influx of research studies focused on the utilization of fluorides to optimize solid electrolyte interfaces and provide dynamic protection of electrodes to regulate the reaction and function performance of batteries.Nonetheless,the shuttle effect and the sluggish redox reaction kinetics emphasize the potential bottlenecks of lithium-sulfur batteries.Whether fluorine modulation regulate the reaction process of Li-S chemistry?Here,the TiOF/Ti_(3)C_(2)MXene nanoribbons with a tailored F distribution were constructed via an NH4F fluorinated method.Relying on in situ characterizations and electrochemical analysis,the F activates the catalysis function of Ti metal atoms in the consecutive redox reaction.The positive charge of Ti metal sites is increased due to the formation of O-Ti-F bonds based on the Lewis acid-base mechanism,which contributes to the adsorption of polysulfides,provides more nucleation sites and promotes the cleavage of S-S bonds.This facilitates the deposition of Li_(2)S at lower overpotentials.Additionally,fluorine has the capacity to capture electrons originating from Li_(2)S dissolution due to charge compensation mechanisms.The fluorine modulation strategy holds the promise of guiding the construction of fluorine-based catalysts and facilitating the seamless integration of multiple consecutive heterogeneous catalytic processes.展开更多
Objective:Neutrophils are one of the most predominant infiltrating leukocytes in lung cancer tissues and are associated with lung cancer progression.How neutrophils promote lung cancer progression,however,has not been...Objective:Neutrophils are one of the most predominant infiltrating leukocytes in lung cancer tissues and are associated with lung cancer progression.How neutrophils promote lung cancer progression,however,has not been established.Methods:Kaplan–Meier plotter online analysis and tissue immunohistochemistry were used to determine the relationship between neutrophils and overall survival in lung cancer patients.The effect of neutrophils on lung cancer was determined using the Transwell migration assay,a proliferation assay,and a murine tumor model.Gene knockdown was used to determine poly ADPribose polymerase(PARP)-1 function in lung cancer-educated neutrophils.Western blot analysis and gelatin zymography were used to demonstrate the correlation between PARP-1 and matrix metallopeptidase 9(MMP-9).Immunoprecipitation coupled to mass spectrometry(IP/MS)was used to identify the proteins interacting with PARP-1.Co-immunoprecipitation(Co-IP)was used to confirm that PARP-1 interacts with arachidonate 5-lipooxygenase(ALOX5).Neutrophil PARP-1 blockage by AG14361 rescued neutrophil-promoted lung cancer progression.Results:An increased number of infiltrating neutrophils was negatively associated with overall survival in lung cancer patients(P<0.001).Neutrophil activation promoted lung cancer cell invasion,migration,and proliferation in vitro,and murine lung cancer growth in vivo.Mechanistically,PARP-1 was shown to be involved in lung cancer cell-induced neutrophil activation to increase MMP-9 expression through interacting and stabilizing ALOX5 by post-translational protein modification(PARylation).Blocking PARP-1 by gene knockdown or AG14361 significantly decreased ALOX5 expression and MMP-9 production,and eliminated neutrophil-mediated lung cancer cell invasion and in vivo tumor growth.Conclusion:We identified a novel mechanism by which PARP-1 mediates lung cancer cell-induced neutrophil activation and PARylates ALOX5 to regulate MMP-9 expression,which exacerbates lung cancer progression.展开更多
Atomically thin MoSe_(2) layers,as a core member of the transition metal dichalcogenides(TMDs)family,benefit from their appealing properties,including tunable band gaps,high exciton binding energies,and giant oscillat...Atomically thin MoSe_(2) layers,as a core member of the transition metal dichalcogenides(TMDs)family,benefit from their appealing properties,including tunable band gaps,high exciton binding energies,and giant oscillator strengths,thus pro-viding an intriguing platform for optoelectronic applications of light-emitting diodes(LEDs),field-effect transistors(FETs),sin-gle-photon emitters(SPEs),and coherent light sources(CLSs).Moreover,these MoSe_(2) layers can realize strong excitonic emis-sion in the near-infrared wavelengths,which can be combined with the silicon-based integration technologies and further encourage the development of the new generation technologies of on-chip optical interconnection,quantum computing,and quantum information processing.Herein,we overview the state-of-the-art applications of light-emitting devices based on two-dimensional MoSe_(2) layers.Firstly,we introduce recent developments in excitonic emission features from atomically thin MoSe_(2) and their dependences on typical physical fields.Next,we focus on the exciton-polaritons and plasmon-exciton polaritons in MoSe_(2) coupled to the diverse forms of optical microcavities.Then,we highlight the promising applications of LEDs,SPEs,and CLSs based on MoSe_(2) and their heterostructures.Finally,we summarize the challenges and opportunities for high-quality emis-sion of MoSe_(2) and high-performance light-emitting devices.展开更多
Objective To compare intra-pleural injection efficacy and safety between Endostar and bevacizumab combined with pemetrexed/cisplatin for the treatment of malignant pleural effusion in patients with epidermal growth fa...Objective To compare intra-pleural injection efficacy and safety between Endostar and bevacizumab combined with pemetrexed/cisplatin for the treatment of malignant pleural effusion in patients with epidermal growth factor receptor(EGFR)-/anaplastic lymphoma kinase(ALK)-lung adenocarcinoma. Methods Sixty-four pCVatients with EGFR-/ALK-lung adenocarcinoma with malignant pleural effusion(MPE) were admitted to the authors' hospital between January 2016 and June 2017. Patients were randomly divided into two groups: Endostar combined with pemetrexed/cisplatin(Endostar group); and bevacizumab plus pemetrexed/cisplatin(Bevacizumab group). They underwent thoracic puncture and catheterization, and MPE was drained as much as possible. Both groups were treated with pemetrexed 500 mg/m^2, intravenous drip(d1), cisplatin 37.5 mg/m^2 per time, intra-pleural injection(d1, d3). Patients in the Endostar group were treated with Endostar 30 mg per time, intra-pleural injection(d1, 3), and patients in the Bevacizumab group were treated with bevacizumab 5 mg/kg per time, intra-pleural injection(d1). Only one cycle of treatment was applied. MPE was extracted before treatment and on day 7 after treatment. The levels of vascular endothelial growth factor(VEGF) were determined using ELISA. Efficacy and side effects were evaluated according to the Response Evaluation Criteria in Solid Tumors(RECIST) version 1.1, and National Cancer Institute Common Terminology Criteria for Adverse Events(CTCAE) version 3.0 criteria. Results The objective response rates in the Endostar and Bevacizumab groups were 50.0% and 56.3%, respectively; there was no statistical difference between the groups(P > 0.05). After one cycle of treatment, the mean VEGF levels in MPE in both groups decreased significantly, and there was no significant difference in the degree of decline between the two groups(P > 0.05). In both groups, pre-treatment VEGF levels for patients achieving complete response were significantly higher than those for patients achieving stable disease + progressive disease(P < 0.05). No specific side effects were recorded. Conclusion Endostar and Bevacizumab demonstrated similar efficacy in controlling MPE in patients with EGFR-/ALK-lung adenocarcinoma through an anti-angiogenesis pathway, with tolerable side effects. The levels of VEGF in MPE could predict the efficacy of intra-pleural injection of anti-angiogenesis drugs.展开更多
The shuttle effect derived from diffusion of lithium polysulfides(LiPSs) and sluggish redox kinetic bring about poor cycling stability and low utilization of sulfur,which have always been the key challenging issues fo...The shuttle effect derived from diffusion of lithium polysulfides(LiPSs) and sluggish redox kinetic bring about poor cycling stability and low utilization of sulfur,which have always been the key challenging issues for the commercial application of lithium-sulfur(Li-S) batteries.Rational design of cathode materials to catalyze Li_(2)S dissociation/nucleation processes is an appealing and valid strategy to develop high-energy practical Li-S batteries.Herein,considering the synergistic effect of bidirectional catalysis on LiPSs conversion and enhanced chemical immobilization for LiPSs by heteroatom doping,Pt nanoparticles loaded on nitrogen-doped carbon spheres(Pt/NCS composites) were constructed as cathode materials.According to the dynamic evolution of Pt catalysts and sulfur species,Pt~0 and Pt^(2+) species were identified as active species for the accelerated dissociation and nucleation of Li_(2)S,respectively.Meanwhile,in-situ Raman results demonstrated the expedited conversion of sulfur species resulted from bidirectional catalysis of active Pt species,corresponding to boosted redox kinetics.Consequently,Pt/NCS cathode exhibited improved long-term cyclability with high initial capacity,along with enhanced rate capability.This work provides a facile approach to construct cathode materials with bidirectional catalysis on Li_(2)S dissociation/nucleation,and sheds light on a more global understanding of the catalytic mechanism of metal catalysts during LiPSs conversion.展开更多
AIM:To detect the concentrations of reactive oxygen species(ROS),transient receptor potential mucin-1(TRPML1),and autophagy-related(Atg)proteins(LC3-Ⅰ,LC3-Ⅱ,and Beclin1)in vitreous humor of patients with simple rheg...AIM:To detect the concentrations of reactive oxygen species(ROS),transient receptor potential mucin-1(TRPML1),and autophagy-related(Atg)proteins(LC3-Ⅰ,LC3-Ⅱ,and Beclin1)in vitreous humor of patients with simple rhegmatogenous retinal detachment(RRD).METHODS:RRD patients enrolled as the RRD group,and patients with idiopathic macular hole(IMH)and idiopathic macular epiretinal membrane(IMEM)were enrolled as control group.The levels of ROS,TRPML1,LC3-Ⅰ,LC3-Ⅱ,and Beclin1 in vitreous humor of patients in the RRD and control groups were detected by enzyme-linked immunosorbent assay(ELISA).RESULTS:The RRD group included 28 eyes 28 patients and had a higher concentration of ROS in vitreous humor(631.86±18.05 vs 436.34±108.22 IU/m L,P<0.05).The ROS level in patients with a wide retinal detachment(RD)extent(RD range≥1/2)was higher than that with a narrow RD extent(RD range<1/2,P<0.05).ROS concentration was negatively correlated with RD time(r=-0.46,P=0.01).The expression levels of LC3-Ⅰand Beclin1 significantly decreased in RRD(P<0.05),but there were no correlations with the RD time,RD extent,or macular involvement.CONCLUSION:In eyes with RRD,the concentration of ROS in vitreous humor increases and the expression levels of Atg proteins decrease,reflecting possibly that autophagy is inhibited.展开更多
Sulfur is an essential macronutrient for the growth of all photosynthetic organisms and plays important roles in different metabolic pathways.However,sulfur metabolism and its related research on macroalgae with impor...Sulfur is an essential macronutrient for the growth of all photosynthetic organisms and plays important roles in different metabolic pathways.However,sulfur metabolism and its related research on macroalgae with important ecological value is rather limited.In this study,marine ecological valued macroalga Gracilariopsis lemaneiformis was used to study the general physiological responses and transcriptome profiling under the sulfate deficiency.The relative growth rate of algae under sulfate deficiency was statistically significantly lower than that of control after 6 days.However,no significant differences were observed in the pigments content and Fv/Fm value,indicating that the photosynthesis was not obviously affected under the sulfate deficiency.Furthermore,the significantly increased soluble protein and carbohydrate contents,and indistinctively differentially expressed sulfate transporter/permease(ST)and ATP sulfurylase(ATPS)genes suggesting that G.lemaneiformis cells did not use sulfur from internal protein and carbohydrate pools but utilize stored sulfur from vacuole to satisfy their nutritional requirements during the sulfate deficiency.Transcriptome data showed that most annotated differentially expressed genes(DEGs)were down-regulated under the sulfate deficiency,including a large proportion of genes involved in the pathway of sulfur metabolism.Therefore,it was concluded that the pathway of sulfur metabolism was suppressed under the sulfate deficiency in G.lemaneiformis.The results and analysis in this study provide a comprehensive understanding for the physiological and molecular response of G.lemaneiformis to sulfate deficiency.展开更多
Transferrin receptor 1(TfR1),encoded by the TFRC gene,is the gatekeeper of cellular iron uptake for cells.A variety of molecular mechanisms are at work to tightly regulate TfR1 expression,and abnormal TfR1 expression ...Transferrin receptor 1(TfR1),encoded by the TFRC gene,is the gatekeeper of cellular iron uptake for cells.A variety of molecular mechanisms are at work to tightly regulate TfR1 expression,and abnormal TfR1 expression has been associated with various diseases.In the current study,to determine the regulation pattern of TfR1,we cloned and overexpressed the human TFRC gene in HeLa cells.RNA-sequencing(RNA-seq)was used to analyze the global transcript levels in overexpressed(OE)and normal control(NC)samples.A total of 1669 differentially expressed genes(DEGs)were identified between OE and NC.Gene ontology(GO)analysis was carried out to explore the functions of the DEGs.It was found that multiple DEGs were associated with ion transport and immunity.Moreover,the regulatory network was constructed on basis of DEGs associated with ion transport and immunity,highlighting that TFRC was the node gene of the network.These results together suggested that precisely controlled TfR1 expression might be not only essential for iron homeostasis,but also globally important for cell physiology,including ion transport and immunity.展开更多
Treatments of atherogenesis,one of the most common cardiovascular diseases(CVD),are continuously being made thanks to innovation and an increasingly in-depth knowledge of percutaneous transluminal coronary angioplasty...Treatments of atherogenesis,one of the most common cardiovascular diseases(CVD),are continuously being made thanks to innovation and an increasingly in-depth knowledge of percutaneous transluminal coronary angioplasty(PTCA),the most revolutionary medical procedure used for vascular restoration.Combined with an expanding balloon,vascular stents used at stricture sites enable the long-time restoration of vascular permeability.However,complication after stenting,in-stent restenosis(ISR),hinders the advancement of vascular stents and are associated with high medical costs for patients for decades years.Thus,the development of a high biocompatibility stent with improved safety and efficiency is urgently needed.This review provides an overview of current advances and potential technologies for the modification of stents for better treatment and prevention of ISR.In particular,the mechanisms of in-stent restenosis are investigated and summarized with the aim to comprehensively understanding the pathogenesis of stent complications.Then,according to different therapeutic functions,the current stent modification strategies are reviewed,including polymeric drug eluting stents,biological friendly stents,prohealing stents,and gene stents.Finally,the review provides an outlook of the challenges in the design of stents with optimal properties.Therefore,this review is a valuable and practical guideline for the development of cardiovascular stents.展开更多
Fetal bovine serum(FBS) is widely used in cell cultures due to its high stability and easy access. It was also used as a substitute for porcine follicular fluid(PFF) in previous studies. However, FBS components are un...Fetal bovine serum(FBS) is widely used in cell cultures due to its high stability and easy access. It was also used as a substitute for porcine follicular fluid(PFF) in previous studies. However, FBS components are unclear, and the presence of FBS in culture media may introduce a variation from batch to batch. This study aimed to establish an effective method to screen FBS in place of PFF in the culture media for porcine oocytes in vitro. We screened FBS from different sources by using porcine fetal fibroblast cells. The effects of six FBS samples on porcine fetal fibroblast cell growth were tested via frozen cell survival assay, cell clone formation assay, cell growth curve, and cell passage activity assay. The best serum that we called GFBS(heat-inactivated FBS, cat. no. 10500-64;Gibco) showed a similar effect on the maturation and development of porcine oocytes to that of PFF and can be used as a good substitute for PFF. These results suggested that the porcine fetal fibroblast cell culture test can be used as a valuable method to screen FBS for porcine oocyte maturation and embryonic development in vitro.展开更多
Objective This study aimed to compare and analyze the clinical efficacy and safety of late-course and simultaneous integrated dose-increasing intensity-modulated radiation therapy(IMRT) for cervical cancer complicated...Objective This study aimed to compare and analyze the clinical efficacy and safety of late-course and simultaneous integrated dose-increasing intensity-modulated radiation therapy(IMRT) for cervical cancer complicated with pelvic lymph node metastasis. Methods Sixty patients with cervical cancer complicated with pelvic lymph node metastasis who were admitted to our hospital from January 2013 to January 2015 were enrolled. The patients were randomly divided into the late-course dose-increasing IMRT group and the simultaneous integrated dose-increasing IMRT group, with 30 cases included in each group, respectively. All patients were concurrently treated with cisplatin. After treatment, the clinical outcomes of the two groups were compared. Results The remission rate of symptoms in the simultaneous integrated dose-increasing IMRT group was significantly higher than that in the late-course dose-increasing IMRT group(P < 0.05). The follow-up results showed that the overall survival time, progression-free survival time, and distant metastasis time of patients in the simultaneous integrated dose-increasing IMRT group were significantly longer than those in the late-course dose-increasing IMRT group(P < 0.05). The recurrent rate of lymph nodes in the radiation field in the simultaneous integrated dose-increasing IMRT group was significantly lower(P < 0.05) than in the late-course dose-increasing IMRT group. There was no significant difference in the incidence of cervical and vaginal recurrence and distant metastasis between the two groups(P > 0.05). The radiation doses of Dmax in the small intestine, D1 cc(the minimum dose to the 1 cc receiving the highest dose) in the bladder, and Dmax in the rectum in the simultaneous integrated dose-increasing IMRT group were significantly lower(P < 0.05) than in the late-course dose-increasing IMRT group. There was no significant difference in intestinal D2 cc(the minimum dose to the 2 cc receiving the highest dose) between the two groups(P > 0.05). The incidence of bone marrow suppression in the simultaneous integrated dose-increasing IMRT group was significantly lower(P < 0.05) than in the late-course dose-increasing IMRT group.Conclusion The application of simultaneous integrated dose-increasing IMRT in the treatment of cervical cancer patients complicated with pelvic lymph node metastasis can significantly control tumor progression, improve the long-term survival time, and postpone distant metastasis time with high safety.展开更多
The mechanics of cardiovascular stents during the process of expansion are very important for stent function and safety. In general, finite element method (FEM) or experi- ments are major methods used to ascertain m...The mechanics of cardiovascular stents during the process of expansion are very important for stent function and safety. In general, finite element method (FEM) or experi- ments are major methods used to ascertain mechanical prop- erties of the stent. In this paper, we develop a theoretical model of the tubular stent, derive formulas for the axial forces and moments on the stent end, and propose formu- las for the plastic limit pressure vs. the stent's radius during expansion. Examples covering different geometrical param- eters and material parameters are provided, and the plastic limit pressures calculated by FEM and the present method are compared, proving that the present formulas are acceptable and meaningful for the design and innovation of the stent.展开更多
A two-step equal channel angular extrusion(ECAE) procedure was used to process pure Mg. The effects of ECAE processing temperature on the microstructure, mechanical properties, and corrosion behavior of pure Mg were...A two-step equal channel angular extrusion(ECAE) procedure was used to process pure Mg. The effects of ECAE processing temperature on the microstructure, mechanical properties, and corrosion behavior of pure Mg were studied. The results show that the average grain size of pure Mg decreases with decreasing extrusion temperature. After ECAE processing at 473 K, fine and equiaxed grains(~9 μm) are obtained. The sample processed at 473 K exhibits the excellent mechanical properties, whereas the sample processed at 633 K has the lowest corrosion rate. The improved corrosion resistance and mechanical properties of pure Mg by ECAE are ascribed to grain refinement and microstructural modification.展开更多
By virtue of the method of integration within ordered product(IWOP)of operators we find the normally ordered form of the optical wavelet-fractional squeezing combinatorial transform(WFrST)operator.The way we successfu...By virtue of the method of integration within ordered product(IWOP)of operators we find the normally ordered form of the optical wavelet-fractional squeezing combinatorial transform(WFrST)operator.The way we successfully combine them to realize the integration transform kernel of WFr ST is making full use of the completeness relation of Dirac’s ket–bra representation.The WFr ST can play role in analyzing and recognizing quantum states,for instance,we apply this new transform to identify the vacuum state,the single-particle state,and their superposition state.展开更多
The adsorption of fibrinogen can be used as a quick indicator of surface haemocompatibility because of its prominent role in coagulation and platelet adhesion. In this work the molecular interaction between fibrinogen...The adsorption of fibrinogen can be used as a quick indicator of surface haemocompatibility because of its prominent role in coagulation and platelet adhesion. In this work the molecular interaction between fibrinogen and a modified titanium oxide surface/platelet has been studied by quartz crystal microbalanee with dissipation (QCM-D) in situ. In order to further characterize the conformation of adsorbed fibrinogen, αC and γ-chain antibody were used to check the orientation and denaturation of fibrinogen on solid surface. QCM-D investiga- tions revealed the fibrinogen have the trend to adsorb on hydropllilic surface in a side-on orientation by positively charged αC domains, which would reduce the exposure of platelet bonding site on γ chain and enable less platelet adhesion and be activated. These obser- vations suggest that certain conformations of adsorbed fibrinogen are less platelet adhesive than others, which opens a possibility for creating a non-platelet adhesive substrates.展开更多
Background The impairment of facial expression recognition has become a biomarker for early identification of first-episode schizophrenia, and this kind of research is increasing.Aims To explore the differences in bra...Background The impairment of facial expression recognition has become a biomarker for early identification of first-episode schizophrenia, and this kind of research is increasing.Aims To explore the differences in brain area activation using different degrees of disgusted facial expression recognition in antipsychotic-na?ve patients with firstepisode schizophrenia and healthy controls.Methods In this study, facial expression recognition tests were performed on 30 first-episode, antipsychoticna?ve patients with schizophrenia(treatment group) and 30 healthy subjects(control group) with matched age, educational attainment and gender. Functional MRI was used for comparing the differences of the brain areas of activation between the two groups.Results The average response time difference between the patient group and the control group in the ‘high degree of disgust' facial expression recognition task was statistically significant(1.359(0.408)/2.193(0.625), F=26.65, p<0.001), and the correct recognition rate of the treatment group was lower than that of the control group(41.05(22.25)/59.84(13.91, F=19.81, p<0.001). Compared with the control group, the left thalamus, right lingual gyrus and right middle temporal gyrus were negatively activated in the patients with first-episode schizophrenia in the ‘high degree of disgust' emotion recognition, and there was a significant activation in the left and right middle temporal gyrus and the right caudate nucleus. However, there was no significant activation difference in the ‘low degree of disgust' recognition.Conclusions In patients with first-episode schizophrenia, the areas of facial recognition impairment are significantly different in different degrees of disgust facial expression recognition.展开更多
Based on quantum mechanical representation and operator theory,this paper restates the two new convolutions of fractional Fourier transform(FrFT)by making full use of the conversion relationship between two mutual con...Based on quantum mechanical representation and operator theory,this paper restates the two new convolutions of fractional Fourier transform(FrFT)by making full use of the conversion relationship between two mutual conjugates:coordinate representation and momentum representation.This paper gives full play to the efficiency of Dirac notation and proves the convolutions of fractional Fourier transform from the perspective of quantum optics,a field that has been developing rapidly.These two new convolution methods have potential value in signal processing.展开更多
Universal coatings with versatile surface adhesion,good mechanochemical robustness,and the capacity for secondary modification are of great scientific interest.However,incorporating these advantages into a system is s...Universal coatings with versatile surface adhesion,good mechanochemical robustness,and the capacity for secondary modification are of great scientific interest.However,incorporating these advantages into a system is still a great challenge.Here,we report a series of catechol-decorated polyallylamines(CPAs),denoted as pseudo-Mytilus edulis foot protein 5(pseudoMefp-5),that mimic not only the catechol and amine groups but also the backbone of Mefp-5.CPAs can fabricate highly adhesive,robust,multifunctional polyCPA(PCPA)coatings based on synergetic catechol-polyamine chemistry as universal building blocks.Due to the interpenetrating entangled network architectures,these coatings exhibit high chemical robustness against harsh conditions(HCl,pH 1;NaOH,pH 14;H2O2,30%),good mechanical robustness,and wear resistance.In addition,PCPA coatings provide abundant grafting sites,enabling the fabrication of various functional surfaces through secondary modification.Furthermore,the versatility,multifaceted robustness,and scalability of PCPA coatings indicate their great potential for surface engineering,especially for withstanding harsh conditions in multipurpose biomedical applications.展开更多
Titanium dioxide(TiO2)has a long history of application in blood contact materials,but it often suffers from insufficient anticoagulant properties.Recently,we have revealed the photocatalytic effect of TiO2 also induc...Titanium dioxide(TiO2)has a long history of application in blood contact materials,but it often suffers from insufficient anticoagulant properties.Recently,we have revealed the photocatalytic effect of TiO2 also induces anticoagulant properties.However,for long-term vascular implant devices such as vascular stents,besides anticoagulation,also anti-inflammatory,anti-hyperplastic properties,and the ability to support endothelial repair,are desired.To meet these requirements,here,we immobilized silver nanoparticles(AgNPs)on the surface of TiO2 nanotubes(TiO2-NTs)to obtain a composite material with enhanced photo-induced anticoagulant property and improvement of the other requested properties.The photo-functionalized TiO2-NTs showed protein-fouling resistance,causing the anticoagulant property and the ability to suppress cell adhesion.The immobilized AgNPs increased the photocatalytic activity of TiO2-NTs to enhances its photo-induced anticoagulant property.The AgNP density was optimized to endow the TiO2-NTs with anti-inflammatory property,a strong inhibitory effect on smooth muscle cells(SMCs),and low toxicity to endothelial cells(ECs).The in vivo test indicated that the photofunctionalized composite material achieved outstanding biocompatibility in vasculature via the synergy of photo-functionalized TiO2-NTs and the multifunctional AgNPs,and therefore has enormous potential in the field of cardiovascular implant devices.Our research could be a useful reference for further designing of multifunctional TiO2 materials with high vascular biocompatibility.展开更多
基金the financial support provided by the National Natural Science Foundation of China(Nos.51932005,22072164)Liaoning Revitalization Talents Program(No.XLYC1807175)the Research Fund of Shenyang National Laboratory for Materials Science,the Natural Science Foundation of Jilin Province(Nos.YDZJ202301ZYTS280,YDZJ202201ZYTS305,YDZJ202401316ZYTS).
文摘Fluorine owing to its inherently high electronegativity exhibits charge delocalization and ion dissociation capabilities;as a result,there has been an influx of research studies focused on the utilization of fluorides to optimize solid electrolyte interfaces and provide dynamic protection of electrodes to regulate the reaction and function performance of batteries.Nonetheless,the shuttle effect and the sluggish redox reaction kinetics emphasize the potential bottlenecks of lithium-sulfur batteries.Whether fluorine modulation regulate the reaction process of Li-S chemistry?Here,the TiOF/Ti_(3)C_(2)MXene nanoribbons with a tailored F distribution were constructed via an NH4F fluorinated method.Relying on in situ characterizations and electrochemical analysis,the F activates the catalysis function of Ti metal atoms in the consecutive redox reaction.The positive charge of Ti metal sites is increased due to the formation of O-Ti-F bonds based on the Lewis acid-base mechanism,which contributes to the adsorption of polysulfides,provides more nucleation sites and promotes the cleavage of S-S bonds.This facilitates the deposition of Li_(2)S at lower overpotentials.Additionally,fluorine has the capacity to capture electrons originating from Li_(2)S dissolution due to charge compensation mechanisms.The fluorine modulation strategy holds the promise of guiding the construction of fluorine-based catalysts and facilitating the seamless integration of multiple consecutive heterogeneous catalytic processes.
基金supported by grants from the National Key R&D Program of China(Grant No.2018YFA0900900)the National Natural Science Foundation of China(Grant Nos.82273334,82203172,81871869,and 81400055)+3 种基金the Jiangsu Province Social Development Key Projects(Grant Nos.BE2020641 and BE2020640)the Xuzhou Medical University Excellent Talent Research Start-up Fund(Grant No.RC20552157)the Jiangsu Province Capability Improvement Project through Science,Technology and Education(Grant No.CXZX202234)funded by the China Postdoctoral Science Foundation(Grant No.2023M732970)。
文摘Objective:Neutrophils are one of the most predominant infiltrating leukocytes in lung cancer tissues and are associated with lung cancer progression.How neutrophils promote lung cancer progression,however,has not been established.Methods:Kaplan–Meier plotter online analysis and tissue immunohistochemistry were used to determine the relationship between neutrophils and overall survival in lung cancer patients.The effect of neutrophils on lung cancer was determined using the Transwell migration assay,a proliferation assay,and a murine tumor model.Gene knockdown was used to determine poly ADPribose polymerase(PARP)-1 function in lung cancer-educated neutrophils.Western blot analysis and gelatin zymography were used to demonstrate the correlation between PARP-1 and matrix metallopeptidase 9(MMP-9).Immunoprecipitation coupled to mass spectrometry(IP/MS)was used to identify the proteins interacting with PARP-1.Co-immunoprecipitation(Co-IP)was used to confirm that PARP-1 interacts with arachidonate 5-lipooxygenase(ALOX5).Neutrophil PARP-1 blockage by AG14361 rescued neutrophil-promoted lung cancer progression.Results:An increased number of infiltrating neutrophils was negatively associated with overall survival in lung cancer patients(P<0.001).Neutrophil activation promoted lung cancer cell invasion,migration,and proliferation in vitro,and murine lung cancer growth in vivo.Mechanistically,PARP-1 was shown to be involved in lung cancer cell-induced neutrophil activation to increase MMP-9 expression through interacting and stabilizing ALOX5 by post-translational protein modification(PARylation).Blocking PARP-1 by gene knockdown or AG14361 significantly decreased ALOX5 expression and MMP-9 production,and eliminated neutrophil-mediated lung cancer cell invasion and in vivo tumor growth.Conclusion:We identified a novel mechanism by which PARP-1 mediates lung cancer cell-induced neutrophil activation and PARylates ALOX5 to regulate MMP-9 expression,which exacerbates lung cancer progression.
基金This work is supported by the National Natural Science Foundation of China(No.61904151)the National Key Research and Development Program of China(No.2021YFA1200803)the Joint Research Funds of the Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(No.2020GXLH-Z-020).
文摘Atomically thin MoSe_(2) layers,as a core member of the transition metal dichalcogenides(TMDs)family,benefit from their appealing properties,including tunable band gaps,high exciton binding energies,and giant oscillator strengths,thus pro-viding an intriguing platform for optoelectronic applications of light-emitting diodes(LEDs),field-effect transistors(FETs),sin-gle-photon emitters(SPEs),and coherent light sources(CLSs).Moreover,these MoSe_(2) layers can realize strong excitonic emis-sion in the near-infrared wavelengths,which can be combined with the silicon-based integration technologies and further encourage the development of the new generation technologies of on-chip optical interconnection,quantum computing,and quantum information processing.Herein,we overview the state-of-the-art applications of light-emitting devices based on two-dimensional MoSe_(2) layers.Firstly,we introduce recent developments in excitonic emission features from atomically thin MoSe_(2) and their dependences on typical physical fields.Next,we focus on the exciton-polaritons and plasmon-exciton polaritons in MoSe_(2) coupled to the diverse forms of optical microcavities.Then,we highlight the promising applications of LEDs,SPEs,and CLSs based on MoSe_(2) and their heterostructures.Finally,we summarize the challenges and opportunities for high-quality emis-sion of MoSe_(2) and high-performance light-emitting devices.
基金Supported by a grant from the Nature Science Foundation of Hubei Province,China(No.2017CFB472)
文摘Objective To compare intra-pleural injection efficacy and safety between Endostar and bevacizumab combined with pemetrexed/cisplatin for the treatment of malignant pleural effusion in patients with epidermal growth factor receptor(EGFR)-/anaplastic lymphoma kinase(ALK)-lung adenocarcinoma. Methods Sixty-four pCVatients with EGFR-/ALK-lung adenocarcinoma with malignant pleural effusion(MPE) were admitted to the authors' hospital between January 2016 and June 2017. Patients were randomly divided into two groups: Endostar combined with pemetrexed/cisplatin(Endostar group); and bevacizumab plus pemetrexed/cisplatin(Bevacizumab group). They underwent thoracic puncture and catheterization, and MPE was drained as much as possible. Both groups were treated with pemetrexed 500 mg/m^2, intravenous drip(d1), cisplatin 37.5 mg/m^2 per time, intra-pleural injection(d1, d3). Patients in the Endostar group were treated with Endostar 30 mg per time, intra-pleural injection(d1, 3), and patients in the Bevacizumab group were treated with bevacizumab 5 mg/kg per time, intra-pleural injection(d1). Only one cycle of treatment was applied. MPE was extracted before treatment and on day 7 after treatment. The levels of vascular endothelial growth factor(VEGF) were determined using ELISA. Efficacy and side effects were evaluated according to the Response Evaluation Criteria in Solid Tumors(RECIST) version 1.1, and National Cancer Institute Common Terminology Criteria for Adverse Events(CTCAE) version 3.0 criteria. Results The objective response rates in the Endostar and Bevacizumab groups were 50.0% and 56.3%, respectively; there was no statistical difference between the groups(P > 0.05). After one cycle of treatment, the mean VEGF levels in MPE in both groups decreased significantly, and there was no significant difference in the degree of decline between the two groups(P > 0.05). In both groups, pre-treatment VEGF levels for patients achieving complete response were significantly higher than those for patients achieving stable disease + progressive disease(P < 0.05). No specific side effects were recorded. Conclusion Endostar and Bevacizumab demonstrated similar efficacy in controlling MPE in patients with EGFR-/ALK-lung adenocarcinoma through an anti-angiogenesis pathway, with tolerable side effects. The levels of VEGF in MPE could predict the efficacy of intra-pleural injection of anti-angiogenesis drugs.
基金the financial support provided by the National Natural Science Foundation of China (51932005, 22072164)the Liaoning Revitalization Talents Program (XLYC1807175)+3 种基金the Research Fund of Shenyang National Laboratory for Materials Sciencethe IMR Innovation Fund (2023PY10)the Natural Science Foundation of Liaoning Province (2023-BS-013)the Science and Technology Research Project of Education Department of Jilin Province (JJKH20210453KJ)。
文摘The shuttle effect derived from diffusion of lithium polysulfides(LiPSs) and sluggish redox kinetic bring about poor cycling stability and low utilization of sulfur,which have always been the key challenging issues for the commercial application of lithium-sulfur(Li-S) batteries.Rational design of cathode materials to catalyze Li_(2)S dissociation/nucleation processes is an appealing and valid strategy to develop high-energy practical Li-S batteries.Herein,considering the synergistic effect of bidirectional catalysis on LiPSs conversion and enhanced chemical immobilization for LiPSs by heteroatom doping,Pt nanoparticles loaded on nitrogen-doped carbon spheres(Pt/NCS composites) were constructed as cathode materials.According to the dynamic evolution of Pt catalysts and sulfur species,Pt~0 and Pt^(2+) species were identified as active species for the accelerated dissociation and nucleation of Li_(2)S,respectively.Meanwhile,in-situ Raman results demonstrated the expedited conversion of sulfur species resulted from bidirectional catalysis of active Pt species,corresponding to boosted redox kinetics.Consequently,Pt/NCS cathode exhibited improved long-term cyclability with high initial capacity,along with enhanced rate capability.This work provides a facile approach to construct cathode materials with bidirectional catalysis on Li_(2)S dissociation/nucleation,and sheds light on a more global understanding of the catalytic mechanism of metal catalysts during LiPSs conversion.
基金Supported by the National Natural Science Foundation of China(No.82070977)。
文摘AIM:To detect the concentrations of reactive oxygen species(ROS),transient receptor potential mucin-1(TRPML1),and autophagy-related(Atg)proteins(LC3-Ⅰ,LC3-Ⅱ,and Beclin1)in vitreous humor of patients with simple rhegmatogenous retinal detachment(RRD).METHODS:RRD patients enrolled as the RRD group,and patients with idiopathic macular hole(IMH)and idiopathic macular epiretinal membrane(IMEM)were enrolled as control group.The levels of ROS,TRPML1,LC3-Ⅰ,LC3-Ⅱ,and Beclin1 in vitreous humor of patients in the RRD and control groups were detected by enzyme-linked immunosorbent assay(ELISA).RESULTS:The RRD group included 28 eyes 28 patients and had a higher concentration of ROS in vitreous humor(631.86±18.05 vs 436.34±108.22 IU/m L,P<0.05).The ROS level in patients with a wide retinal detachment(RD)extent(RD range≥1/2)was higher than that with a narrow RD extent(RD range<1/2,P<0.05).ROS concentration was negatively correlated with RD time(r=-0.46,P=0.01).The expression levels of LC3-Ⅰand Beclin1 significantly decreased in RRD(P<0.05),but there were no correlations with the RD time,RD extent,or macular involvement.CONCLUSION:In eyes with RRD,the concentration of ROS in vitreous humor increases and the expression levels of Atg proteins decrease,reflecting possibly that autophagy is inhibited.
基金supported by Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(Grant No.GML2019ZD0606)National Natural Science Foundation of China(Grant No.41976125)+3 种基金Special Fund for Science and Technology of Guangdong Province(Grant No.STKJ2021193)Natural Science Foundation of Guangdong Province(Grant No.2022A1515012141)Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515110001)Innovation Project of Guangdong University(Grant No.2018KCXTD012).
文摘Sulfur is an essential macronutrient for the growth of all photosynthetic organisms and plays important roles in different metabolic pathways.However,sulfur metabolism and its related research on macroalgae with important ecological value is rather limited.In this study,marine ecological valued macroalga Gracilariopsis lemaneiformis was used to study the general physiological responses and transcriptome profiling under the sulfate deficiency.The relative growth rate of algae under sulfate deficiency was statistically significantly lower than that of control after 6 days.However,no significant differences were observed in the pigments content and Fv/Fm value,indicating that the photosynthesis was not obviously affected under the sulfate deficiency.Furthermore,the significantly increased soluble protein and carbohydrate contents,and indistinctively differentially expressed sulfate transporter/permease(ST)and ATP sulfurylase(ATPS)genes suggesting that G.lemaneiformis cells did not use sulfur from internal protein and carbohydrate pools but utilize stored sulfur from vacuole to satisfy their nutritional requirements during the sulfate deficiency.Transcriptome data showed that most annotated differentially expressed genes(DEGs)were down-regulated under the sulfate deficiency,including a large proportion of genes involved in the pathway of sulfur metabolism.Therefore,it was concluded that the pathway of sulfur metabolism was suppressed under the sulfate deficiency in G.lemaneiformis.The results and analysis in this study provide a comprehensive understanding for the physiological and molecular response of G.lemaneiformis to sulfate deficiency.
基金The work was supported by the General Fund of Health Commission of Hubei Province(No.WJ2019M147).
文摘Transferrin receptor 1(TfR1),encoded by the TFRC gene,is the gatekeeper of cellular iron uptake for cells.A variety of molecular mechanisms are at work to tightly regulate TfR1 expression,and abnormal TfR1 expression has been associated with various diseases.In the current study,to determine the regulation pattern of TfR1,we cloned and overexpressed the human TFRC gene in HeLa cells.RNA-sequencing(RNA-seq)was used to analyze the global transcript levels in overexpressed(OE)and normal control(NC)samples.A total of 1669 differentially expressed genes(DEGs)were identified between OE and NC.Gene ontology(GO)analysis was carried out to explore the functions of the DEGs.It was found that multiple DEGs were associated with ion transport and immunity.Moreover,the regulatory network was constructed on basis of DEGs associated with ion transport and immunity,highlighting that TFRC was the node gene of the network.These results together suggested that precisely controlled TfR1 expression might be not only essential for iron homeostasis,but also globally important for cell physiology,including ion transport and immunity.
基金financial support from the National Key Research and Development Program of China(2017YFB0702500)Natural Science Foundation of China(NSFC Project,81801853)Sichuan Science and Technology Program(19GJHZ0058)。
文摘Treatments of atherogenesis,one of the most common cardiovascular diseases(CVD),are continuously being made thanks to innovation and an increasingly in-depth knowledge of percutaneous transluminal coronary angioplasty(PTCA),the most revolutionary medical procedure used for vascular restoration.Combined with an expanding balloon,vascular stents used at stricture sites enable the long-time restoration of vascular permeability.However,complication after stenting,in-stent restenosis(ISR),hinders the advancement of vascular stents and are associated with high medical costs for patients for decades years.Thus,the development of a high biocompatibility stent with improved safety and efficiency is urgently needed.This review provides an overview of current advances and potential technologies for the modification of stents for better treatment and prevention of ISR.In particular,the mechanisms of in-stent restenosis are investigated and summarized with the aim to comprehensively understanding the pathogenesis of stent complications.Then,according to different therapeutic functions,the current stent modification strategies are reviewed,including polymeric drug eluting stents,biological friendly stents,prohealing stents,and gene stents.Finally,the review provides an outlook of the challenges in the design of stents with optimal properties.Therefore,this review is a valuable and practical guideline for the development of cardiovascular stents.
基金Chongqing Technology Innovation and Application Development Grant,Grant/Award Number:cstc2019jscx-msxm X0394Chongqing Special Fund for Performance Incentive Guide,Grant/Award Number:cqjxjl201709+1 种基金Earmarked Fund for Modern Agro-industry Technology Research System,Grant/Award Number:CARS-36Chongqing Agriculture Development Grant,Grant/Award Number:17406
文摘Fetal bovine serum(FBS) is widely used in cell cultures due to its high stability and easy access. It was also used as a substitute for porcine follicular fluid(PFF) in previous studies. However, FBS components are unclear, and the presence of FBS in culture media may introduce a variation from batch to batch. This study aimed to establish an effective method to screen FBS in place of PFF in the culture media for porcine oocytes in vitro. We screened FBS from different sources by using porcine fetal fibroblast cells. The effects of six FBS samples on porcine fetal fibroblast cell growth were tested via frozen cell survival assay, cell clone formation assay, cell growth curve, and cell passage activity assay. The best serum that we called GFBS(heat-inactivated FBS, cat. no. 10500-64;Gibco) showed a similar effect on the maturation and development of porcine oocytes to that of PFF and can be used as a good substitute for PFF. These results suggested that the porcine fetal fibroblast cell culture test can be used as a valuable method to screen FBS for porcine oocyte maturation and embryonic development in vitro.
文摘Objective This study aimed to compare and analyze the clinical efficacy and safety of late-course and simultaneous integrated dose-increasing intensity-modulated radiation therapy(IMRT) for cervical cancer complicated with pelvic lymph node metastasis. Methods Sixty patients with cervical cancer complicated with pelvic lymph node metastasis who were admitted to our hospital from January 2013 to January 2015 were enrolled. The patients were randomly divided into the late-course dose-increasing IMRT group and the simultaneous integrated dose-increasing IMRT group, with 30 cases included in each group, respectively. All patients were concurrently treated with cisplatin. After treatment, the clinical outcomes of the two groups were compared. Results The remission rate of symptoms in the simultaneous integrated dose-increasing IMRT group was significantly higher than that in the late-course dose-increasing IMRT group(P < 0.05). The follow-up results showed that the overall survival time, progression-free survival time, and distant metastasis time of patients in the simultaneous integrated dose-increasing IMRT group were significantly longer than those in the late-course dose-increasing IMRT group(P < 0.05). The recurrent rate of lymph nodes in the radiation field in the simultaneous integrated dose-increasing IMRT group was significantly lower(P < 0.05) than in the late-course dose-increasing IMRT group. There was no significant difference in the incidence of cervical and vaginal recurrence and distant metastasis between the two groups(P > 0.05). The radiation doses of Dmax in the small intestine, D1 cc(the minimum dose to the 1 cc receiving the highest dose) in the bladder, and Dmax in the rectum in the simultaneous integrated dose-increasing IMRT group were significantly lower(P < 0.05) than in the late-course dose-increasing IMRT group. There was no significant difference in intestinal D2 cc(the minimum dose to the 2 cc receiving the highest dose) between the two groups(P > 0.05). The incidence of bone marrow suppression in the simultaneous integrated dose-increasing IMRT group was significantly lower(P < 0.05) than in the late-course dose-increasing IMRT group.Conclusion The application of simultaneous integrated dose-increasing IMRT in the treatment of cervical cancer patients complicated with pelvic lymph node metastasis can significantly control tumor progression, improve the long-term survival time, and postpone distant metastasis time with high safety.
基金supported by the National Basic Research Program of China (2005CB623904)the National Natural Science Foundation of China (10872176).
文摘The mechanics of cardiovascular stents during the process of expansion are very important for stent function and safety. In general, finite element method (FEM) or experi- ments are major methods used to ascertain mechanical prop- erties of the stent. In this paper, we develop a theoretical model of the tubular stent, derive formulas for the axial forces and moments on the stent end, and propose formu- las for the plastic limit pressure vs. the stent's radius during expansion. Examples covering different geometrical param- eters and material parameters are provided, and the plastic limit pressures calculated by FEM and the present method are compared, proving that the present formulas are acceptable and meaningful for the design and innovation of the stent.
基金financially supported by the National Natural Science Foundation of China (Nos. 81330031 and 81271701)
文摘A two-step equal channel angular extrusion(ECAE) procedure was used to process pure Mg. The effects of ECAE processing temperature on the microstructure, mechanical properties, and corrosion behavior of pure Mg were studied. The results show that the average grain size of pure Mg decreases with decreasing extrusion temperature. After ECAE processing at 473 K, fine and equiaxed grains(~9 μm) are obtained. The sample processed at 473 K exhibits the excellent mechanical properties, whereas the sample processed at 633 K has the lowest corrosion rate. The improved corrosion resistance and mechanical properties of pure Mg by ECAE are ascribed to grain refinement and microstructural modification.
基金supported by the National Natural Science Foundation of China(Grant No.11304126)the College Students’Innovation Training Program(Grant No.202110299696X)。
文摘By virtue of the method of integration within ordered product(IWOP)of operators we find the normally ordered form of the optical wavelet-fractional squeezing combinatorial transform(WFrST)operator.The way we successfully combine them to realize the integration transform kernel of WFr ST is making full use of the completeness relation of Dirac’s ket–bra representation.The WFr ST can play role in analyzing and recognizing quantum states,for instance,we apply this new transform to identify the vacuum state,the single-particle state,and their superposition state.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.9732011CB606200 and No.81330031) and Fundamentat Research Funds for the Central Universities (No.SWJTU11CX054). The authors gratefully acknowledge assistance of Mr. Hai-bei Liu at Qsense company for consulting.
文摘The adsorption of fibrinogen can be used as a quick indicator of surface haemocompatibility because of its prominent role in coagulation and platelet adhesion. In this work the molecular interaction between fibrinogen and a modified titanium oxide surface/platelet has been studied by quartz crystal microbalanee with dissipation (QCM-D) in situ. In order to further characterize the conformation of adsorbed fibrinogen, αC and γ-chain antibody were used to check the orientation and denaturation of fibrinogen on solid surface. QCM-D investiga- tions revealed the fibrinogen have the trend to adsorb on hydropllilic surface in a side-on orientation by positively charged αC domains, which would reduce the exposure of platelet bonding site on γ chain and enable less platelet adhesion and be activated. These obser- vations suggest that certain conformations of adsorbed fibrinogen are less platelet adhesive than others, which opens a possibility for creating a non-platelet adhesive substrates.
基金Shanghai Mental Health Center hospital-level research project(2016-YJ-04)National Key Technology R&D Program of China during the 10th Five-Year Plan Period(2007BAI17B04)+2 种基金National Key Research and Development Program(2016YFC1306805)National Natural Science Foundation of China(81471359)Shanghai Municipal Committee of Science and Technology Guide Project of Chinese and Western Medicine(14411963400)
文摘Background The impairment of facial expression recognition has become a biomarker for early identification of first-episode schizophrenia, and this kind of research is increasing.Aims To explore the differences in brain area activation using different degrees of disgusted facial expression recognition in antipsychotic-na?ve patients with firstepisode schizophrenia and healthy controls.Methods In this study, facial expression recognition tests were performed on 30 first-episode, antipsychoticna?ve patients with schizophrenia(treatment group) and 30 healthy subjects(control group) with matched age, educational attainment and gender. Functional MRI was used for comparing the differences of the brain areas of activation between the two groups.Results The average response time difference between the patient group and the control group in the ‘high degree of disgust' facial expression recognition task was statistically significant(1.359(0.408)/2.193(0.625), F=26.65, p<0.001), and the correct recognition rate of the treatment group was lower than that of the control group(41.05(22.25)/59.84(13.91, F=19.81, p<0.001). Compared with the control group, the left thalamus, right lingual gyrus and right middle temporal gyrus were negatively activated in the patients with first-episode schizophrenia in the ‘high degree of disgust' emotion recognition, and there was a significant activation in the left and right middle temporal gyrus and the right caudate nucleus. However, there was no significant activation difference in the ‘low degree of disgust' recognition.Conclusions In patients with first-episode schizophrenia, the areas of facial recognition impairment are significantly different in different degrees of disgust facial expression recognition.
基金National Natural Science Foundation of China(Grant Number:11304126)College Students' Innovation Training Program(Grant Number:202110299696X)。
文摘Based on quantum mechanical representation and operator theory,this paper restates the two new convolutions of fractional Fourier transform(FrFT)by making full use of the conversion relationship between two mutual conjugates:coordinate representation and momentum representation.This paper gives full play to the efficiency of Dirac notation and proves the convolutions of fractional Fourier transform from the perspective of quantum optics,a field that has been developing rapidly.These two new convolution methods have potential value in signal processing.
基金supported by the National Natural Science Foundation of China(projects 82072072,32171326,82272157,32261160372,and 82350710800)the Guangdong Basic and Applied Basic Research Foundation(2022B1515130010 and 2021A1515111035)+1 种基金the National Natural Science Foundation of China/Research Grants Council(NSFC/RGC)Joint Research Scheme(N_PolyU526/22)the Leading Talent Project of Guangzhou Development District(2020-L013)。
文摘Universal coatings with versatile surface adhesion,good mechanochemical robustness,and the capacity for secondary modification are of great scientific interest.However,incorporating these advantages into a system is still a great challenge.Here,we report a series of catechol-decorated polyallylamines(CPAs),denoted as pseudo-Mytilus edulis foot protein 5(pseudoMefp-5),that mimic not only the catechol and amine groups but also the backbone of Mefp-5.CPAs can fabricate highly adhesive,robust,multifunctional polyCPA(PCPA)coatings based on synergetic catechol-polyamine chemistry as universal building blocks.Due to the interpenetrating entangled network architectures,these coatings exhibit high chemical robustness against harsh conditions(HCl,pH 1;NaOH,pH 14;H2O2,30%),good mechanical robustness,and wear resistance.In addition,PCPA coatings provide abundant grafting sites,enabling the fabrication of various functional surfaces through secondary modification.Furthermore,the versatility,multifaceted robustness,and scalability of PCPA coatings indicate their great potential for surface engineering,especially for withstanding harsh conditions in multipurpose biomedical applications.
基金the National Natural Science Foundation of China(nos.31870958,31700821,and 81771988).
文摘Titanium dioxide(TiO2)has a long history of application in blood contact materials,but it often suffers from insufficient anticoagulant properties.Recently,we have revealed the photocatalytic effect of TiO2 also induces anticoagulant properties.However,for long-term vascular implant devices such as vascular stents,besides anticoagulation,also anti-inflammatory,anti-hyperplastic properties,and the ability to support endothelial repair,are desired.To meet these requirements,here,we immobilized silver nanoparticles(AgNPs)on the surface of TiO2 nanotubes(TiO2-NTs)to obtain a composite material with enhanced photo-induced anticoagulant property and improvement of the other requested properties.The photo-functionalized TiO2-NTs showed protein-fouling resistance,causing the anticoagulant property and the ability to suppress cell adhesion.The immobilized AgNPs increased the photocatalytic activity of TiO2-NTs to enhances its photo-induced anticoagulant property.The AgNP density was optimized to endow the TiO2-NTs with anti-inflammatory property,a strong inhibitory effect on smooth muscle cells(SMCs),and low toxicity to endothelial cells(ECs).The in vivo test indicated that the photofunctionalized composite material achieved outstanding biocompatibility in vasculature via the synergy of photo-functionalized TiO2-NTs and the multifunctional AgNPs,and therefore has enormous potential in the field of cardiovascular implant devices.Our research could be a useful reference for further designing of multifunctional TiO2 materials with high vascular biocompatibility.