To improve the anti-jamming and interference mitigation ability of the UAV-aided communication systems, this paper investigates the channel selection optimization problem in face of both internal mutual interference a...To improve the anti-jamming and interference mitigation ability of the UAV-aided communication systems, this paper investigates the channel selection optimization problem in face of both internal mutual interference and external malicious jamming. A cooperative anti-jamming and interference mitigation method based on local altruistic is proposed to optimize UAVs’ channel selection. Specifically, a Stackelberg game is modeled to formulate the confrontation relationship between UAVs and the jammer. A local altruistic game is modeled with each UAV considering the utilities of both itself and other UAVs. A distributed cooperative anti-jamming and interference mitigation algorithm is proposed to obtain the Stackelberg equilibrium. Finally, the convergence of the proposed algorithm and the impact of the transmission power on the system loss value are analyzed, and the anti-jamming performance of the proposed algorithm can be improved by around 64% compared with the existing algorithms.展开更多
This paper presents a design of single photon avalanche diode(SPAD)light detection and ranging(LiDAR)sensor with 128×128 pixels and 128 column-parallel time-to-analog-merged-analog-to-digital converts(TA-ADCs).Un...This paper presents a design of single photon avalanche diode(SPAD)light detection and ranging(LiDAR)sensor with 128×128 pixels and 128 column-parallel time-to-analog-merged-analog-to-digital converts(TA-ADCs).Unlike the conventional TAC-based SPAD LiDAR sensor,in which the TAC and ADC are separately implemented,we propose to merge the TAC and ADC by sharing their capacitors,thus avoiding the analog readout noise of TAC’s output buffer,improving the conversion rate,and reducing chip area.The reverse start-stop logic is employed to reduce the power of the TA-ADC.Fabricated in a 180 nm CMOS process,our prototype sensor exhibits a timing resolution of 25 ps,a DNL of+0.30/−0.77 LSB,an INL of+1.41/−2.20 LSB,and a total power consumption of 190 mW.A flash LiDAR system based on this sensor demonstrates the function of 2D/3D imaging with 128×128 resolution,25 kHz inter-frame rate,and sub-centimeter ranging precision.展开更多
The performance of optical interconnection has improved dramatically in recent years.Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection,which ...The performance of optical interconnection has improved dramatically in recent years.Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection,which not only provides the optical gain which is absent from native Si substrates and enables complete photonic functionalities on chip,but also improves the system performance through advanced heterogeneous integrated packaging.This paper reviews recent progress of silicon-based optoelectronic heterogeneous integration in high performance optical interconnection.The research status,development trend and application of ultra-low loss optical waveguides,high-speed detectors,high-speed modulators,lasers and 2D,2.5D,3D and monolithic integration are focused on.展开更多
With the explosive development of artificial intelligence(AI),machine learning(ML),and high-performance comput-ing(HPC),the ever-growing data movement is asking for high density interconnects with higher bandwidth(BW)...With the explosive development of artificial intelligence(AI),machine learning(ML),and high-performance comput-ing(HPC),the ever-growing data movement is asking for high density interconnects with higher bandwidth(BW),lower power and lower latency[1−3].The optical I/O leverages silicon photonic(SiPh)technology to enable high-density large-scale integrated photonics.展开更多
This paper investigates the Quality of Experience(QoE)oriented channel access anti-jamming problem in 5th Generation Mobile Communication(5G)ultra-dense networks.Firstly,considering that the 5G base station adopts bea...This paper investigates the Quality of Experience(QoE)oriented channel access anti-jamming problem in 5th Generation Mobile Communication(5G)ultra-dense networks.Firstly,considering that the 5G base station adopts beamforming technology,an anti-jamming model under Space Division Multiple Access(SDMA)conditions is proposed.Secondly,the confrontational relationship between users and the jammer is formulated as a Stackelberg game.Besides,to achieve global optimization,we design a local cooperation mechanism for users and formulate the cooperation and competition among users as a local altruistic game.By proving that the local altruistic game is an Exact Potential Game(EPG),we further prove the existence of pure strategy Nash Equilibrium(NE)among users and Stackelberg Equilibrium(SE)between users and jammer.Thirdly,to obtain the equilibrium solutions of the proposed games,we propose an anti-jamming channel selection algorithm and improve its convergence speed through heterogeneous learning parameters.The simulation results validate the convergence and effectiveness of the proposed algorithm.Compared with the throughput optimization scheme,our proposed scheme obtain a greater network satisfaction rate.Finally,we also analyze user fairness changes during the algorithm convergence process and get some interesting conclusions.展开更多
For the non-stop demands for a better and smarter society, the number of electronic devices keeps increasing exponentially;and the computation power, communication data rate, smart sensing capability and intelligence ...For the non-stop demands for a better and smarter society, the number of electronic devices keeps increasing exponentially;and the computation power, communication data rate, smart sensing capability and intelligence are always not enough. Hardware supports software, while the integrated circuit(IC) is the core of hardware. In this long review paper, we summarize and discuss recent trending IC design directions and challenges, and try to give the readers big/cool pictures on each selected small/hot topics. We divide the trends into the following six categories, namely, 1) machine learning and artificial intelligence(AI) chips, 2) communication ICs, 3) data converters, 4) power converters, 5) imagers and range sensors, 6) emerging directions. Hope you find this paper useful for your future research and works.展开更多
As a result of rapid development in electronics and communication technology,large-scale unmanned aerial vehicles(UAVs)are harnessed for various promising applications in a coordinated manner.Although it poses numerou...As a result of rapid development in electronics and communication technology,large-scale unmanned aerial vehicles(UAVs)are harnessed for various promising applications in a coordinated manner.Although it poses numerous advantages,resource management among various domains in large-scale UAV communication networks is the key challenge to be solved urgently.Specifically,due to the inherent requirements and future development trend,distributed resource management is suitable.In this article,we investigate the resource management problem for large-scale UAV communication networks from game-theoretic perspective which are exactly coincident with the distributed and autonomous manner.By exploring the inherent features,the distinctive challenges are discussed.Then,we explore several gametheoretic models that not only combat the challenges but also have broad application prospects.We provide the basics of each game-theoretic model and discuss the potential applications for resource management in large-scale UAV communication networks.Specifically,mean-field game,graphical game,Stackelberg game,coalition game and potential game are included.After that,we propose two innovative case studies to highlight the feasibility of such novel game-theoretic models.Finally,we give some future research directions to shed light on future opportunities and applications.展开更多
Vehicles can establish a collaborative environment cognition through sharing the original or processed sensor data from the vehicular sensors and status map. Clustering in the vehicular ad-hoc network(VANET) is crucia...Vehicles can establish a collaborative environment cognition through sharing the original or processed sensor data from the vehicular sensors and status map. Clustering in the vehicular ad-hoc network(VANET) is crucial for enhancing the stability of the collaborative environment. In this paper, the problem for clustering is innovatively transformed into a cutting graph problem. A novel clustering algorithm based on the Spectral Clustering algorithm and the improved force-directed algorithm is designed. It takes the average lifetime of all clusters as an optimization goal so that the stability of the entire system can be enhanced. A series of close-to-practical scenarios are generated by the Simulation of Urban Mobility(SUMO). The numerical results indicate that our approach has superior performance in maintaining whole cluster stability.展开更多
This paper investigates a power control problem in a jamming system,where a separate smart jammer is deployed to ensure the communication security of the legal user.However,due to power leakage,the smart jammer may in...This paper investigates a power control problem in a jamming system,where a separate smart jammer is deployed to ensure the communication security of the legal user.However,due to power leakage,the smart jammer may incur unintentional interference to legal users.The key is how to suppress illegal communication while limit the negative impact on legal user.A jamming counter measure Stackelberg game is formulated to model the jamming power control dynamic of the system.The smart jammer acts as a leader to sense and interfere illegal communications of the illegal user,while the illegal user acts as a follower.In the game,the impact of uncertain channel information is taken into account.According to whether illegal user considers the uncertain channel information,we investigate two scenarios,namely,illegal user can obtain statistical distribution and accurate information of interference channel gain and its own cost,respectively.This work not only proposes a jamming counter measure iterative algorithm to update parameters,but also gives two solutions to obtain the Stackelberg equilibrium(SE).The power convergence behaviours under two scenarios are analyzed and compared.Additionally,brute force is used to verify the accuracy of the SE value further.展开更多
Objective:To study the correlation of peripheral blood NK cell content with tumor marker content and proliferation molecule expression in patients with non-small cell lung cancer (NSCLC).Methods: A total of 80 patient...Objective:To study the correlation of peripheral blood NK cell content with tumor marker content and proliferation molecule expression in patients with non-small cell lung cancer (NSCLC).Methods: A total of 80 patients who were diagnosed with NSCLC in our hospital between June 2014 and October 2016 were selected as the NSCLC group of the research, and 96 healthy volunteers who received physical examination in our hospital during the same period were selected as the control group of the research. The peripheral blood NK cell content and serum tumor marker contents of two groups of subjects were determined, and the proliferation molecule expression levels in lung cancer focus tissue and focus tissue adjacent to carcinoma of NSCLC group were determined.Results:Peripheral blood NK cell content of NSCLC group was significantly lower than that of control group;serum CEA, CA125, Cyfra21-1 and HE4 contents were significantly higher than those of control group, and serum CEA, CA125, Cyfra21-1 and HE4 contents of NSCLC patients with high NK cell content were significantly lower than those of NSCLC patients with low NK cell content;c-myc, c-FLIP, Livin, Moesin and k-ras protein expression in lung cancer focus tissue were significantly higher than those in focus tissue adjacent to carcinoma, and c-myc, c-FLIP, Livin, Moesin and k-ras protein expression in lung cancer focus tissue with high NK cell content were significantly lower than those in lung cancer focus tissue with low NK cell content.Conclusion: Peripheral blood NK cell content significantly reduces in patients with NSCLC and is associated with the cancer cell proliferation activity.展开更多
As the intersection of disciplines deepens,the field of battery modeling is increasingly employing various artificial intelligence(AI)approaches to improve the efficiency of battery management and enhance the stabilit...As the intersection of disciplines deepens,the field of battery modeling is increasingly employing various artificial intelligence(AI)approaches to improve the efficiency of battery management and enhance the stability and reliability of battery operation.This paper reviews the value of AI methods in lithium-ion battery health management and in particular analyses the application of machine learning(ML),one of the many branches of AI,to lithium-ion battery state of health(SOH),focusing on the advantages and strengths of neural network(NN)methods in ML for lithium-ion battery SOH simulation and prediction.NN is one of the important branches of ML,in which the application of NNs such as backpropagation NN,convolutional NN,and long short-term memory NN in SOH estimation of lithium-ion batteries has received wide attention.Reports so far have shown that the utilization of NN to model the SOH of lithium-ion batteries has the advantages of high efficiency,low energy consumption,high robustness,and scalable models.In the future,NN can make a greater contribution to lithium-ion battery management by,first,utilizing more field data to play a more practical role in health feature screening and model building,and second,by enhancing the intelligent screening and combination of battery parameters to characterize the actual lithium-ion battery SOH to a greater extent.The in-depth application of NN in lithium-ion battery SOH will certainly further enhance the science,reliability,stability,and robustness of lithium-ion battery management.展开更多
A 4×112 Gb/s hybrid-integrated optical receiver is demonstrated based on the silicon-photonic vertical p-i-n photodetector and silicon–germanium transimpedance amplifier.We propose a photonic-electronic co-desig...A 4×112 Gb/s hybrid-integrated optical receiver is demonstrated based on the silicon-photonic vertical p-i-n photodetector and silicon–germanium transimpedance amplifier.We propose a photonic-electronic co-design technique to optimize both the device-level and system-level performance,based on the end-to-end equivalent circuit model of the receiver.Continuous-time linear equalization and shunt peaking are employed to enhance the frequency response.Experimental results reveal that the optical-to-electrical 3-dB bandwidth of the receiver is 48 GHz.Clear open NRZ eye diagrams at56 Gb/s and PAM-4 eye diagrams at 112 Gb/s are achieved without an equalizer in the oscilloscope.The measured bit error rates for 56 Gb/s in NRZ and 112 Gb/s in PAM-4 reach 1×10^(-12)and 2.4×10^(-4)(KP4-FEC:forward error correction)thresholds under-4 dBm input power,respectively.Furthermore,the proposed receiver boasts a power consumption of approximately2.2 pJ/bit,indicating an energy efficient solution for data center traffic growth.展开更多
Due to the rise of 5G,IoT,AI,and high-performance computing applications,datacenter trafc has grown at a compound annual growth rate of nearly 30%.Furthermore,nearly three-fourths of the datacenter trafc resides withi...Due to the rise of 5G,IoT,AI,and high-performance computing applications,datacenter trafc has grown at a compound annual growth rate of nearly 30%.Furthermore,nearly three-fourths of the datacenter trafc resides within datacenters.The conventional pluggable optics increases at a much slower rate than that of datacenter trafc.The gap between application requirements and the capability of conventional pluggable optics keeps increasing,a trend that is unsustainable.Copackaged optics(CPO)is a disruptive approach to increasing the interconnecting bandwidth density and energy efciency by dramatically shortening the electrical link length through advanced packaging and co-optimization of electronics and photonics.CPO is widely regarded as a promising solution for future datacenter interconnections,and silicon platform is the most promising platform for large-scale integration.Leading international companies(e.g.,Intel,Broadcom and IBM)have heavily investigated in CPO technology,an inter-disciplinary research feld that involves photonic devices,integrated circuits design,packaging,photonic device modeling,electronic-photonic co-simulation,applications,and standardization.This review aims to provide the readers a comprehensive overview of the state-of-the-art progress of CPO in silicon platform,identify the key challenges,and point out the potential solutions,hoping to encourage collaboration between diferent research felds to accelerate the development of CPO technology.展开更多
A hybrid integrated 16-channel silicon transmitter based on co-designed photonic integrated circuits(PICs) and electrical chiplets is demonstrated. The driver in the 65 nm CMOS process employs the combination of a dis...A hybrid integrated 16-channel silicon transmitter based on co-designed photonic integrated circuits(PICs) and electrical chiplets is demonstrated. The driver in the 65 nm CMOS process employs the combination of a distributed architecture, two-tap feedforward equalization(FFE), and a push–pull output stage, exhibiting an estimated differential output swing of 4.0V_(pp). The rms jitter of 2.0 ps is achieved at 50 Gb/s under nonreturnto-zero on–off keying(NRZ-OOK) modulation. The PICs are fabricated on a standard silicon-on-insulator platform and consist of 16 parallel silicon dual-drive Mach–Zehnder modulators on a single chip. The chip-on-board co-packaged Si transmitter is constituted by the multichannel chiplets without any off-chip bias control, which significantly simplifies the system complexity. Experimentally, the open and clear optical eye diagrams of selected channels up to 50 Gb/s OOK with extinction ratios exceeding 3 dB are obtained without any digital signal processing. The power consumption of the Si transmitter with a high integration density featuring a throughput up to 800 Gb/s is only 5.35 p J/bit, indicating a great potential for massively parallel terabit-scale optical interconnects for future hyperscale data centers and high-performance computing systems.展开更多
We demonstrate the optical transmission of an 800 Gbit/s(4×200 Gbit/s)pulse amplitude modulation-4(PAM-4)signal and a 480 Gbit/s(4×120 Gbit/s)on–off-keying(OOK)signal by using a high-bandwidth(BW)silicon ph...We demonstrate the optical transmission of an 800 Gbit/s(4×200 Gbit/s)pulse amplitude modulation-4(PAM-4)signal and a 480 Gbit/s(4×120 Gbit/s)on–off-keying(OOK)signal by using a high-bandwidth(BW)silicon photonic(SiP)transmitter with the aid of digital signal processing(DSP).In this transmitter,a four-channel SiP modulator chip is co-packaged with a four-channel driver chip,with a measured 3 dB BW of 40 GHz.DSP is applied in both the transmitter and receiver sides for pre-/post-compensation and bit error rate(BER)calculation.Back-to-back(B2B)BERs of the PAM-4 signal and OOK signal are first measured for each channel of the transmitter with respect to a variety of data rates.Similar BER performance of four channels shows good uniformity of the transmitter between different channels.The BER penalty of the PAM-4 and OOK signals for 500 m and 1 km standard single-mode fiber(SSMF)transmission is then experimentally tested by using one channel of the transmitter.For a 200 Gbit/s PAM-4 signal,the BER is below the hard-decision forward error correction(HD-FEC)threshold for B2B and below the soft-decision FEC(SD-FEC)threshold after 1 km transmission.For a 120 Gbit/s OOK signal,the BER is below SD-FEC threshold for B2B.After 500 m and 1 km transmission,the data rate of the OOK signal shrinks to 119 Gbit/s and 118 Gbit/s with the SD-FEC threshold,respectively.Finally,the 800 Gbit/s PAM-4 signal with 1 km transmission is achieved with the BER of all four channels below the SD-FEC threshold.展开更多
This paper proposes a fast-locking bang-bang phase-locked loop(BBPLL). A novel adaptive loop gain controller(ALGC) is proposed to increase the locking speed of the BBPLL. A novel bang-bang phase/frequency detector...This paper proposes a fast-locking bang-bang phase-locked loop(BBPLL). A novel adaptive loop gain controller(ALGC) is proposed to increase the locking speed of the BBPLL. A novel bang-bang phase/frequency detector(BBPFD) with adaptive-mode-selective circuits is proposed to select the locking mode of the BBPLL during the locking process. Based on the detected results of the BBPFD, the ALGC can dynamically adjust the overall gain of the loop for fast-locking procedure. Compared with the conventional BBPFD, only a few gates are added in the proposed BBPFD. Therefore, the proposed BBPFD with adaptive-mode-selective circuits is realized with little area and power penalties. The fast-locking BBPLL is implemented in a 65 nm CMOS technology. The core area of the BBPLL is 0.022 mm;. Measured results show that the BBPLL operates at a frequency range from0.6 to 2.4 GHz. When operating at 1.8 GHz, the power consumption is 3.1 mW with a 0.9-V supply voltage. With the proposed techniques, the BBPLL achieves a normalized locked time of 1.1μs @ 100 MHz frequency jump.The figure-of-merit of the fast-locking BBPLL is-334 dB.展开更多
The bubble packing method can generate high-quality node sets in simple and complex domains.However,its efficiency remains to be improved.This study is a part of an ongoing effort to introduce several acceleration sch...The bubble packing method can generate high-quality node sets in simple and complex domains.However,its efficiency remains to be improved.This study is a part of an ongoing effort to introduce several acceleration schemes to reduce the cost of simulation.Firstly,allow the viscosity coefficient c in the bubble governing equations to change according the coordinate of the bubble which are defined separately as odd and normal bubbles,and meanwhile with the saw-shape relationship with time or iterations.Then,in order to relieve the over crowded initial bubble placement,two coefficients w1 and w2 are introduced to modify the insertion criterion.The range of those two coefficients are discussed to be w1=1,w2∈[0.5,0.8].Finally,a self-adaptive termination condition is logically set when the stable system equilibrium is achieved.Numerical examples illustrate that the computing cost can significantly decrease by roughly 80%via adopting various combination of proper schemes(except the uniform placement example),and the average qualities of corresponding Delaunay triangulation substantially exceed 0.9.It shows that those strategies are efficient and can generate a node set with high quality.展开更多
基金supported in part by the National Natural Science Foundation of China (No.62271253,61901523,62001381)Fundamental Research Funds for the Central Universities (No.NS2023018)+2 种基金the National Aerospace Science Foundation of China under Grant 2023Z021052002the open research fund of National Mobile Communications Research Laboratory,Southeast University (No.2023D09)Postgraduate Research & Practice Innovation Program of NUAA (No.xcxjh20220402)。
文摘To improve the anti-jamming and interference mitigation ability of the UAV-aided communication systems, this paper investigates the channel selection optimization problem in face of both internal mutual interference and external malicious jamming. A cooperative anti-jamming and interference mitigation method based on local altruistic is proposed to optimize UAVs’ channel selection. Specifically, a Stackelberg game is modeled to formulate the confrontation relationship between UAVs and the jammer. A local altruistic game is modeled with each UAV considering the utilities of both itself and other UAVs. A distributed cooperative anti-jamming and interference mitigation algorithm is proposed to obtain the Stackelberg equilibrium. Finally, the convergence of the proposed algorithm and the impact of the transmission power on the system loss value are analyzed, and the anti-jamming performance of the proposed algorithm can be improved by around 64% compared with the existing algorithms.
基金supported by National Science and Technology Major Project(Grant No.2021ZD0109801)in part by the Beijing Municipal Science and Technology Project(Grant No.Z221100007722028)in part by the National Natural Science Foundation of China(Grant No.62334008).
文摘This paper presents a design of single photon avalanche diode(SPAD)light detection and ranging(LiDAR)sensor with 128×128 pixels and 128 column-parallel time-to-analog-merged-analog-to-digital converts(TA-ADCs).Unlike the conventional TAC-based SPAD LiDAR sensor,in which the TAC and ADC are separately implemented,we propose to merge the TAC and ADC by sharing their capacitors,thus avoiding the analog readout noise of TAC’s output buffer,improving the conversion rate,and reducing chip area.The reverse start-stop logic is employed to reduce the power of the TA-ADC.Fabricated in a 180 nm CMOS process,our prototype sensor exhibits a timing resolution of 25 ps,a DNL of+0.30/−0.77 LSB,an INL of+1.41/−2.20 LSB,and a total power consumption of 190 mW.A flash LiDAR system based on this sensor demonstrates the function of 2D/3D imaging with 128×128 resolution,25 kHz inter-frame rate,and sub-centimeter ranging precision.
基金Project supported in part by the National Key Research and Development Program of China(Grant No.2021YFB2206504)the National Natural Science Foundation of China(Grant No.62235017)the China Postdoctoral Science Foundation(Grant No.2021M703125).
文摘The performance of optical interconnection has improved dramatically in recent years.Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection,which not only provides the optical gain which is absent from native Si substrates and enables complete photonic functionalities on chip,but also improves the system performance through advanced heterogeneous integrated packaging.This paper reviews recent progress of silicon-based optoelectronic heterogeneous integration in high performance optical interconnection.The research status,development trend and application of ultra-low loss optical waveguides,high-speed detectors,high-speed modulators,lasers and 2D,2.5D,3D and monolithic integration are focused on.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.61925505,92373209 and 62235017).
文摘With the explosive development of artificial intelligence(AI),machine learning(ML),and high-performance comput-ing(HPC),the ever-growing data movement is asking for high density interconnects with higher bandwidth(BW),lower power and lower latency[1−3].The optical I/O leverages silicon photonic(SiPh)technology to enable high-density large-scale integrated photonics.
基金supported by the National Natural Science Foundation of China under Grant No.61901523 and No.62071488.
文摘This paper investigates the Quality of Experience(QoE)oriented channel access anti-jamming problem in 5th Generation Mobile Communication(5G)ultra-dense networks.Firstly,considering that the 5G base station adopts beamforming technology,an anti-jamming model under Space Division Multiple Access(SDMA)conditions is proposed.Secondly,the confrontational relationship between users and the jammer is formulated as a Stackelberg game.Besides,to achieve global optimization,we design a local cooperation mechanism for users and formulate the cooperation and competition among users as a local altruistic game.By proving that the local altruistic game is an Exact Potential Game(EPG),we further prove the existence of pure strategy Nash Equilibrium(NE)among users and Stackelberg Equilibrium(SE)between users and jammer.Thirdly,to obtain the equilibrium solutions of the proposed games,we propose an anti-jamming channel selection algorithm and improve its convergence speed through heterogeneous learning parameters.The simulation results validate the convergence and effectiveness of the proposed algorithm.Compared with the throughput optimization scheme,our proposed scheme obtain a greater network satisfaction rate.Finally,we also analyze user fairness changes during the algorithm convergence process and get some interesting conclusions.
文摘For the non-stop demands for a better and smarter society, the number of electronic devices keeps increasing exponentially;and the computation power, communication data rate, smart sensing capability and intelligence are always not enough. Hardware supports software, while the integrated circuit(IC) is the core of hardware. In this long review paper, we summarize and discuss recent trending IC design directions and challenges, and try to give the readers big/cool pictures on each selected small/hot topics. We divide the trends into the following six categories, namely, 1) machine learning and artificial intelligence(AI) chips, 2) communication ICs, 3) data converters, 4) power converters, 5) imagers and range sensors, 6) emerging directions. Hope you find this paper useful for your future research and works.
基金This work was supported by National Key R&D Program of China under Grant 2018YFB1800802in part by the National Natural Science Foundation of China under Grant No.61771488,No.61631020 and No.61827801+1 种基金in part by State Key Laboratory of Air Traffic Management System and Technology under Grant No.SKLATM201808in part by Postgraduate Research and Practice Innovation Program of Jiangsu Province under No.KYCX190188.
文摘As a result of rapid development in electronics and communication technology,large-scale unmanned aerial vehicles(UAVs)are harnessed for various promising applications in a coordinated manner.Although it poses numerous advantages,resource management among various domains in large-scale UAV communication networks is the key challenge to be solved urgently.Specifically,due to the inherent requirements and future development trend,distributed resource management is suitable.In this article,we investigate the resource management problem for large-scale UAV communication networks from game-theoretic perspective which are exactly coincident with the distributed and autonomous manner.By exploring the inherent features,the distinctive challenges are discussed.Then,we explore several gametheoretic models that not only combat the challenges but also have broad application prospects.We provide the basics of each game-theoretic model and discuss the potential applications for resource management in large-scale UAV communication networks.Specifically,mean-field game,graphical game,Stackelberg game,coalition game and potential game are included.After that,we propose two innovative case studies to highlight the feasibility of such novel game-theoretic models.Finally,we give some future research directions to shed light on future opportunities and applications.
基金supported in part by National Key R&D Program of China under Grant 2018YFB1800800National NSF of China under Grant 61827801,61801218+2 种基金by the open research fund of Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space(Nanjing Univ.Aeronaut.Astronaut.)(No.KF20181913)in part by the Natural Science Foundation of Jiangsu Province under Grant BK20180420by the Open Foundation for Graduate Innovation of NUAA(Grant NO.kfjj20190417).
文摘Vehicles can establish a collaborative environment cognition through sharing the original or processed sensor data from the vehicular sensors and status map. Clustering in the vehicular ad-hoc network(VANET) is crucial for enhancing the stability of the collaborative environment. In this paper, the problem for clustering is innovatively transformed into a cutting graph problem. A novel clustering algorithm based on the Spectral Clustering algorithm and the improved force-directed algorithm is designed. It takes the average lifetime of all clusters as an optimization goal so that the stability of the entire system can be enhanced. A series of close-to-practical scenarios are generated by the Simulation of Urban Mobility(SUMO). The numerical results indicate that our approach has superior performance in maintaining whole cluster stability.
基金supported in part by National Key R&D Program of China under Grant 2018YFB1800800by National NSF of China under Grant 61601490,61801218,61827801,61631020+3 种基金by the open research fund of Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space(Nanjing Univ.Aeronaut.Astronaut.)(No.KF20181913)in part by State Key Laboratory of Air Traffic Management System and Technology under SKLATM201808in part by the Natural Science Foundation of Jiangsu Province under Grant BK20180420,BK20180424by the Open Foundation for Graduate Innovation of NUAA(Grant NO.kfjj20190417)。
文摘This paper investigates a power control problem in a jamming system,where a separate smart jammer is deployed to ensure the communication security of the legal user.However,due to power leakage,the smart jammer may incur unintentional interference to legal users.The key is how to suppress illegal communication while limit the negative impact on legal user.A jamming counter measure Stackelberg game is formulated to model the jamming power control dynamic of the system.The smart jammer acts as a leader to sense and interfere illegal communications of the illegal user,while the illegal user acts as a follower.In the game,the impact of uncertain channel information is taken into account.According to whether illegal user considers the uncertain channel information,we investigate two scenarios,namely,illegal user can obtain statistical distribution and accurate information of interference channel gain and its own cost,respectively.This work not only proposes a jamming counter measure iterative algorithm to update parameters,but also gives two solutions to obtain the Stackelberg equilibrium(SE).The power convergence behaviours under two scenarios are analyzed and compared.Additionally,brute force is used to verify the accuracy of the SE value further.
文摘Objective:To study the correlation of peripheral blood NK cell content with tumor marker content and proliferation molecule expression in patients with non-small cell lung cancer (NSCLC).Methods: A total of 80 patients who were diagnosed with NSCLC in our hospital between June 2014 and October 2016 were selected as the NSCLC group of the research, and 96 healthy volunteers who received physical examination in our hospital during the same period were selected as the control group of the research. The peripheral blood NK cell content and serum tumor marker contents of two groups of subjects were determined, and the proliferation molecule expression levels in lung cancer focus tissue and focus tissue adjacent to carcinoma of NSCLC group were determined.Results:Peripheral blood NK cell content of NSCLC group was significantly lower than that of control group;serum CEA, CA125, Cyfra21-1 and HE4 contents were significantly higher than those of control group, and serum CEA, CA125, Cyfra21-1 and HE4 contents of NSCLC patients with high NK cell content were significantly lower than those of NSCLC patients with low NK cell content;c-myc, c-FLIP, Livin, Moesin and k-ras protein expression in lung cancer focus tissue were significantly higher than those in focus tissue adjacent to carcinoma, and c-myc, c-FLIP, Livin, Moesin and k-ras protein expression in lung cancer focus tissue with high NK cell content were significantly lower than those in lung cancer focus tissue with low NK cell content.Conclusion: Peripheral blood NK cell content significantly reduces in patients with NSCLC and is associated with the cancer cell proliferation activity.
基金supported by the National Key R&D Program of China(Grant No.2021YFB2401800)the Research Fund Program for Young Scholars(Chen Lai)of Beijing Institute of Technology,and the National Natural Science Foundation of China(Grant No.52074037).
文摘As the intersection of disciplines deepens,the field of battery modeling is increasingly employing various artificial intelligence(AI)approaches to improve the efficiency of battery management and enhance the stability and reliability of battery operation.This paper reviews the value of AI methods in lithium-ion battery health management and in particular analyses the application of machine learning(ML),one of the many branches of AI,to lithium-ion battery state of health(SOH),focusing on the advantages and strengths of neural network(NN)methods in ML for lithium-ion battery SOH simulation and prediction.NN is one of the important branches of ML,in which the application of NNs such as backpropagation NN,convolutional NN,and long short-term memory NN in SOH estimation of lithium-ion batteries has received wide attention.Reports so far have shown that the utilization of NN to model the SOH of lithium-ion batteries has the advantages of high efficiency,low energy consumption,high robustness,and scalable models.In the future,NN can make a greater contribution to lithium-ion battery management by,first,utilizing more field data to play a more practical role in health feature screening and model building,and second,by enhancing the intelligent screening and combination of battery parameters to characterize the actual lithium-ion battery SOH to a greater extent.The in-depth application of NN in lithium-ion battery SOH will certainly further enhance the science,reliability,stability,and robustness of lithium-ion battery management.
基金supported in part by the National Natural Science Foundation of China(NSFC)(Nos.62235017 and 62235015)the Young Elite Scientist Sponsorship Program(No.YESS20220688)the National Key Research and Development Program of China(No.2020YFB2205700)。
文摘A 4×112 Gb/s hybrid-integrated optical receiver is demonstrated based on the silicon-photonic vertical p-i-n photodetector and silicon–germanium transimpedance amplifier.We propose a photonic-electronic co-design technique to optimize both the device-level and system-level performance,based on the end-to-end equivalent circuit model of the receiver.Continuous-time linear equalization and shunt peaking are employed to enhance the frequency response.Experimental results reveal that the optical-to-electrical 3-dB bandwidth of the receiver is 48 GHz.Clear open NRZ eye diagrams at56 Gb/s and PAM-4 eye diagrams at 112 Gb/s are achieved without an equalizer in the oscilloscope.The measured bit error rates for 56 Gb/s in NRZ and 112 Gb/s in PAM-4 reach 1×10^(-12)and 2.4×10^(-4)(KP4-FEC:forward error correction)thresholds under-4 dBm input power,respectively.Furthermore,the proposed receiver boasts a power consumption of approximately2.2 pJ/bit,indicating an energy efficient solution for data center traffic growth.
基金supported by the National Key Research and Development Program of China(No.2019YFB2203004).
文摘Due to the rise of 5G,IoT,AI,and high-performance computing applications,datacenter trafc has grown at a compound annual growth rate of nearly 30%.Furthermore,nearly three-fourths of the datacenter trafc resides within datacenters.The conventional pluggable optics increases at a much slower rate than that of datacenter trafc.The gap between application requirements and the capability of conventional pluggable optics keeps increasing,a trend that is unsustainable.Copackaged optics(CPO)is a disruptive approach to increasing the interconnecting bandwidth density and energy efciency by dramatically shortening the electrical link length through advanced packaging and co-optimization of electronics and photonics.CPO is widely regarded as a promising solution for future datacenter interconnections,and silicon platform is the most promising platform for large-scale integration.Leading international companies(e.g.,Intel,Broadcom and IBM)have heavily investigated in CPO technology,an inter-disciplinary research feld that involves photonic devices,integrated circuits design,packaging,photonic device modeling,electronic-photonic co-simulation,applications,and standardization.This review aims to provide the readers a comprehensive overview of the state-of-the-art progress of CPO in silicon platform,identify the key challenges,and point out the potential solutions,hoping to encourage collaboration between diferent research felds to accelerate the development of CPO technology.
基金supported by the National Key R&D Program of China(2021YFB2401800)the National Natural Science Foundation of China(22179008,21875022)+1 种基金the Natural Science Foundation of Chongqing,China(cstc2020jcyj-msxmX0654,cstc2020jcyjmsxmX0589,and cstc2021jcyj-msxm1125)China Postdoctoral Science Foundation(2021M700403)。
基金National Key Research and Development Program of China(2021YFB0301000,2020YFB2206100,2022YFB2803700)
文摘A hybrid integrated 16-channel silicon transmitter based on co-designed photonic integrated circuits(PICs) and electrical chiplets is demonstrated. The driver in the 65 nm CMOS process employs the combination of a distributed architecture, two-tap feedforward equalization(FFE), and a push–pull output stage, exhibiting an estimated differential output swing of 4.0V_(pp). The rms jitter of 2.0 ps is achieved at 50 Gb/s under nonreturnto-zero on–off keying(NRZ-OOK) modulation. The PICs are fabricated on a standard silicon-on-insulator platform and consist of 16 parallel silicon dual-drive Mach–Zehnder modulators on a single chip. The chip-on-board co-packaged Si transmitter is constituted by the multichannel chiplets without any off-chip bias control, which significantly simplifies the system complexity. Experimentally, the open and clear optical eye diagrams of selected channels up to 50 Gb/s OOK with extinction ratios exceeding 3 dB are obtained without any digital signal processing. The power consumption of the Si transmitter with a high integration density featuring a throughput up to 800 Gb/s is only 5.35 p J/bit, indicating a great potential for massively parallel terabit-scale optical interconnects for future hyperscale data centers and high-performance computing systems.
基金National Key Research and Development Programe of China(2019YFB2205201,2019YFB2205203)Hubei Technological Innovation Project(2019AAA054).
文摘We demonstrate the optical transmission of an 800 Gbit/s(4×200 Gbit/s)pulse amplitude modulation-4(PAM-4)signal and a 480 Gbit/s(4×120 Gbit/s)on–off-keying(OOK)signal by using a high-bandwidth(BW)silicon photonic(SiP)transmitter with the aid of digital signal processing(DSP).In this transmitter,a four-channel SiP modulator chip is co-packaged with a four-channel driver chip,with a measured 3 dB BW of 40 GHz.DSP is applied in both the transmitter and receiver sides for pre-/post-compensation and bit error rate(BER)calculation.Back-to-back(B2B)BERs of the PAM-4 signal and OOK signal are first measured for each channel of the transmitter with respect to a variety of data rates.Similar BER performance of four channels shows good uniformity of the transmitter between different channels.The BER penalty of the PAM-4 and OOK signals for 500 m and 1 km standard single-mode fiber(SSMF)transmission is then experimentally tested by using one channel of the transmitter.For a 200 Gbit/s PAM-4 signal,the BER is below the hard-decision forward error correction(HD-FEC)threshold for B2B and below the soft-decision FEC(SD-FEC)threshold after 1 km transmission.For a 120 Gbit/s OOK signal,the BER is below SD-FEC threshold for B2B.After 500 m and 1 km transmission,the data rate of the OOK signal shrinks to 119 Gbit/s and 118 Gbit/s with the SD-FEC threshold,respectively.Finally,the 800 Gbit/s PAM-4 signal with 1 km transmission is achieved with the BER of all four channels below the SD-FEC threshold.
基金Project supported by the National Nature Science Foundation of China(Nos.61331003,61474108)the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(No.2016ZX03001002)
文摘This paper proposes a fast-locking bang-bang phase-locked loop(BBPLL). A novel adaptive loop gain controller(ALGC) is proposed to increase the locking speed of the BBPLL. A novel bang-bang phase/frequency detector(BBPFD) with adaptive-mode-selective circuits is proposed to select the locking mode of the BBPLL during the locking process. Based on the detected results of the BBPFD, the ALGC can dynamically adjust the overall gain of the loop for fast-locking procedure. Compared with the conventional BBPFD, only a few gates are added in the proposed BBPFD. Therefore, the proposed BBPFD with adaptive-mode-selective circuits is realized with little area and power penalties. The fast-locking BBPLL is implemented in a 65 nm CMOS technology. The core area of the BBPLL is 0.022 mm;. Measured results show that the BBPLL operates at a frequency range from0.6 to 2.4 GHz. When operating at 1.8 GHz, the power consumption is 3.1 mW with a 0.9-V supply voltage. With the proposed techniques, the BBPLL achieves a normalized locked time of 1.1μs @ 100 MHz frequency jump.The figure-of-merit of the fast-locking BBPLL is-334 dB.
基金National Natural Science Foundation of China(No.11071196,90916027).
文摘The bubble packing method can generate high-quality node sets in simple and complex domains.However,its efficiency remains to be improved.This study is a part of an ongoing effort to introduce several acceleration schemes to reduce the cost of simulation.Firstly,allow the viscosity coefficient c in the bubble governing equations to change according the coordinate of the bubble which are defined separately as odd and normal bubbles,and meanwhile with the saw-shape relationship with time or iterations.Then,in order to relieve the over crowded initial bubble placement,two coefficients w1 and w2 are introduced to modify the insertion criterion.The range of those two coefficients are discussed to be w1=1,w2∈[0.5,0.8].Finally,a self-adaptive termination condition is logically set when the stable system equilibrium is achieved.Numerical examples illustrate that the computing cost can significantly decrease by roughly 80%via adopting various combination of proper schemes(except the uniform placement example),and the average qualities of corresponding Delaunay triangulation substantially exceed 0.9.It shows that those strategies are efficient and can generate a node set with high quality.