Using extended homogeneous balance method and variable separation hypothesis, we found new variable separation solutions with three arbitrary functions of the (2+1)-dimensional dispersive long-wave equations, Based...Using extended homogeneous balance method and variable separation hypothesis, we found new variable separation solutions with three arbitrary functions of the (2+1)-dimensional dispersive long-wave equations, Based on derived solutions, we revealed abundant oscillating solitons such as dromion, multi-dromion, solitoff, solitary waves, and so on, by selecting appropriate functions.展开更多
Using improved homogeneous balance method, we obtain new exact solutions for the coupled integrable dispersionless equation. On the basis of these exact solutions, we find some new interesting coherent structures by s...Using improved homogeneous balance method, we obtain new exact solutions for the coupled integrable dispersionless equation. On the basis of these exact solutions, we find some new interesting coherent structures by selecting arbitrary functions appropriately.展开更多
Using improved homogeneous balance method, we obtain complex function form new exact solutions for the (1+1)-dimensional dispersion-less system, and from the exact solutions we derive real function form solution of...Using improved homogeneous balance method, we obtain complex function form new exact solutions for the (1+1)-dimensional dispersion-less system, and from the exact solutions we derive real function form solution of the field u. Based on this real function form solution, we find some new interesting coherent structures by selecting arbitrary functions appropriately.展开更多
Sonoluminescence is more distinctly observed in phosphoric and sulfuric acid,which exhibit high viscosity and lower vapor pressures relative to water.Within an 85-wt%phosphoric acid solution saturated with argon(Ar),v...Sonoluminescence is more distinctly observed in phosphoric and sulfuric acid,which exhibit high viscosity and lower vapor pressures relative to water.Within an 85-wt%phosphoric acid solution saturated with argon(Ar),variations in the light-emitting regimes of bubbles were noted to correspond with increments in the driving acoustic intensity.Specifically,the bubbles were observed to perform a dance-like motion 2 cm below the multi-bubble sonoluminescence(MBSL)cluster,traversing a 25-mm^(2) grid during the camera exposure period.Spectral analysis conducted at the beginning of the experiment showed a gradual attenuation of CN(B^(2)Σ–X^(2)Σ)emission concurrent with a strengthening of Ar(4p–4s)atom emission lines.The application of a theoretical temperature model to the spectral data revealed that the internal temperature of the bubbles escalates swiftly upon their implosion.This study is instrumental in advancing the comprehension of the underlying mechanisms of sonoluminescence and in the formulation of a dynamic model for the behavior of the bubbles.展开更多
基金The project supported by the Natural Science Foundation of Inner Mongolia under Grant No. 200408020113 and National Natural Science Foundation of China under Grant No. 40564001
文摘Using extended homogeneous balance method and variable separation hypothesis, we found new variable separation solutions with three arbitrary functions of the (2+1)-dimensional dispersive long-wave equations, Based on derived solutions, we revealed abundant oscillating solitons such as dromion, multi-dromion, solitoff, solitary waves, and so on, by selecting appropriate functions.
基金Supported by Colleges and Universities Scientific Research Foundation of Inner Mongolia Autonomous Region under Grant N0. NJZY07139Natural Science Foundation of Inner Mongolia Autonomous Region under Grant No. 200408020113
文摘Using improved homogeneous balance method, we obtain new exact solutions for the coupled integrable dispersionless equation. On the basis of these exact solutions, we find some new interesting coherent structures by selecting arbitrary functions appropriately.
基金The project supported by National Natural Science Foundation of China under Grant No.40564001Natural Science Foundation of Inner Mongolia under Grant No.200408020113
文摘Using improved homogeneous balance method, we obtain complex function form new exact solutions for the (1+1)-dimensional dispersion-less system, and from the exact solutions we derive real function form solution of the field u. Based on this real function form solution, we find some new interesting coherent structures by selecting arbitrary functions appropriately.
基金Project supported by the Scientific Research Project of Higher Education in the Inner Mongolia Autonomous Region,China(Grant No.NJZY23100)the Natural Science Foundation of Inner Mongolia Autonomous Region,China(Grant No.2024FX30)the 14th Five Year Plan Project for Education Science in Inner Mongolia Autonomous Region,China(Grant No.NGJGH2023205).
文摘Sonoluminescence is more distinctly observed in phosphoric and sulfuric acid,which exhibit high viscosity and lower vapor pressures relative to water.Within an 85-wt%phosphoric acid solution saturated with argon(Ar),variations in the light-emitting regimes of bubbles were noted to correspond with increments in the driving acoustic intensity.Specifically,the bubbles were observed to perform a dance-like motion 2 cm below the multi-bubble sonoluminescence(MBSL)cluster,traversing a 25-mm^(2) grid during the camera exposure period.Spectral analysis conducted at the beginning of the experiment showed a gradual attenuation of CN(B^(2)Σ–X^(2)Σ)emission concurrent with a strengthening of Ar(4p–4s)atom emission lines.The application of a theoretical temperature model to the spectral data revealed that the internal temperature of the bubbles escalates swiftly upon their implosion.This study is instrumental in advancing the comprehension of the underlying mechanisms of sonoluminescence and in the formulation of a dynamic model for the behavior of the bubbles.