Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure,thereby revolutionizing computer processes.However,the rising energy consumption i...Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure,thereby revolutionizing computer processes.However,the rising energy consumption in cloud centers poses a significant challenge,especially with the escalating energy costs.This paper tackles this issue by introducing efficient solutions for data placement and node management,with a clear emphasis on the crucial role of the Internet of Things(IoT)throughout the research process.The IoT assumes a pivotal role in this study by actively collecting real-time data from various sensors strategically positioned in and around data centers.These sensors continuously monitor vital parameters such as energy usage and temperature,thereby providing a comprehensive dataset for analysis.The data generated by the IoT is seamlessly integrated into the Hybrid TCN-GRU-NBeat(NGT)model,enabling a dynamic and accurate representation of the current state of the data center environment.Through the incorporation of the Seagull Optimization Algorithm(SOA),the NGT model optimizes storage migration strategies based on the latest information provided by IoT sensors.The model is trained using 80%of the available dataset and subsequently tested on the remaining 20%.The results demonstrate the effectiveness of the proposed approach,with a Mean Squared Error(MSE)of 5.33%and a Mean Absolute Error(MAE)of 2.83%,accurately estimating power prices and leading to an average reduction of 23.88%in power costs.Furthermore,the integration of IoT data significantly enhances the accuracy of the NGT model,outperforming benchmark algorithms such as DenseNet,Support Vector Machine(SVM),Decision Trees,and AlexNet.The NGT model achieves an impressive accuracy rate of 97.9%,surpassing the rates of 87%,83%,80%,and 79%,respectively,for the benchmark algorithms.These findings underscore the effectiveness of the proposed method in optimizing energy efficiency and enhancing the predictive capabilities of cloud computing systems.The IoT plays a critical role in driving these advancements by providing real-time data insights into the operational aspects of data centers.展开更多
Effectively managing complex logistics data is essential for development sustainability and growth,especially in optimizing distribution routes.This article addresses the limitations of current logistics path optimiza...Effectively managing complex logistics data is essential for development sustainability and growth,especially in optimizing distribution routes.This article addresses the limitations of current logistics path optimization methods,such as inefficiencies and high operational costs.To overcome these drawbacks,we introduce the Hybrid Firefly-Spotted Hyena Optimization(HFSHO)algorithm,a novel approach that combines the rapid exploration and global search abilities of the Firefly Algorithm(FO)with the localized search and region-exploitation skills of the Spotted Hyena Optimization Algorithm(SHO).HFSHO aims to improve logistics path optimization and reduce operational costs.The algorithm’s effectiveness is systematically assessed through rigorous comparative analyses with established algorithms like the Ant Colony Algorithm(ACO),Cuckoo Search Algorithm(CSA)and Jaya Algo-rithm(JA).The evaluation also employs benchmarking methodologies using standardized function sets covering diverse objective functions,including Schwefel’s,Rastrigin,Ackley,Sphere and the ZDT and DTLZ Function suite.HFSHO outperforms these algorithms,achieving a minimum path distance of 546 units,highlighting its prowess in logistics path optimization.This comprehensive evaluation authenticates HFSHO’s exceptional performance across various logistic optimization scenarios.These findings emphasize the critical significance of selecting an appropriate algorithm for logistics path navigation,with HFSHO emerging as an efficient choice.Through the synergistic use of FO and SHO,HFSHO achieves a 15%improvement in convergence,heightened operational efficiency and substantial cost reductions in logistics operations.It presents a promising solution for optimizing logistics paths,offering logistics planners and decision-makers valuable insights and contributing substantively to sustainable sectoral growth.展开更多
The smart grid has enabled users to control their home energy more effectively and efficiently.A home energy management system(HEM)is a challenging task because this requires the most effective scheduling of intellige...The smart grid has enabled users to control their home energy more effectively and efficiently.A home energy management system(HEM)is a challenging task because this requires the most effective scheduling of intelligent home appliances to save energy.Here,we presented a meta-heuristic-based HEM system that integrates the Greywolf Algorithm(GWA)and Harmony Search Algorithms(HSA).Moreover,a fusion initiated on HSA and GWA operators is used to optimize energy intake.Furthermore,many knapsacks are being utilized to ensure that peak-hour load usage for electricity customers does not surpass a certain edge.Hybridization has proven beneficial in achieving numerous objectives simultaneously,decreasing the peak-to-average ratio and power prices.Widespread MATLAB simulations are cast-off to evaluate the routine of the anticipated method,Harmony GWA(HGWA).The simulations are for a multifamily housing complex outfitted with various cool gadgets.The simulation results indicate that GWA functions better regarding cost savings than HSA.In reputes of PAR,HSA is significantly more effective than GWA.The suggested method reduces costs for single and ten-house construction by up to 2200.3 PKR,as opposed to 503.4 in GWA,398.10 in HSA and 640.3 in HGWA.The suggested approach performed better than HSA and GWA in PAR reduction.For single-family homes in HGWA,GWA and HSA,the reduction in PAR is 45.79%,21.92%and 20.54%,respectively.The hybrid approach,however,performs better than the currently used nature-inspired techniques in terms of Cost and PAR.展开更多
In the Smart Grid(SG)residential environment,consumers change their power consumption routine according to the price and incentives announced by the utility,which causes the prices to deviate from the initial pattern....In the Smart Grid(SG)residential environment,consumers change their power consumption routine according to the price and incentives announced by the utility,which causes the prices to deviate from the initial pattern.Thereby,electricity demand and price forecasting play a significant role and can help in terms of reliability and sustainability.Due to the massive amount of data,big data analytics for forecasting becomes a hot topic in the SG domain.In this paper,the changing and non-linearity of consumer consumption pattern complex data is taken as input.To minimize the computational cost and complexity of the data,the average of the feature engineering approaches includes:Recursive Feature Eliminator(RFE),Extreme Gradient Boosting(XGboost),Random Forest(RF),and are upgraded to extract the most relevant and significant features.To this end,we have proposed the DensetNet-121 network and Support Vector Machine(SVM)ensemble with Aquila Optimizer(AO)to ensure adaptability and handle the complexity of data in the classification.Further,the AO method helps to tune the parameters of DensNet(121 layers)and SVM,which achieves less training loss,computational time,minimized overfitting problems and more training/test accuracy.Performance evaluation metrics and statistical analysis validate the proposed model results are better than the benchmark schemes.Our proposed method has achieved a minimal value of the Mean Average Percentage Error(MAPE)rate i.e.,8%by DenseNet-AO and 6%by SVM-AO and the maximum accurateness rate of 92%and 95%,respectively.展开更多
One of the major concerns for the utilities in the Smart Grid(SG)is electricity theft.With the implementation of smart meters,the frequency of energy usage and data collection from smart homes has increased,which make...One of the major concerns for the utilities in the Smart Grid(SG)is electricity theft.With the implementation of smart meters,the frequency of energy usage and data collection from smart homes has increased,which makes it possible for advanced data analysis that was not previously possible.For this purpose,we have taken historical data of energy thieves and normal users.To avoid imbalance observation,biased estimates,we applied the interpolation method.Furthermore,the data unbalancing issue is resolved in this paper by Nearmiss undersampling technique and makes the data suitable for further processing.By proposing an improved version of Zeiler and Fergus Net(ZFNet)as a feature extraction approach,we had able to reduce the model’s time complexity.To minimize the overfitting issues,increase the training accuracy and reduce the training loss,we have proposed an enhanced method by merging Adaptive Boosting(AdaBoost)classifier with Coronavirus Herd Immunity Optimizer(CHIO)and Forensic based Investigation Optimizer(FBIO).In terms of low computational complexity,minimized over-fitting problems on a large quantity of data,reduced training time and training loss and increased training accuracy,our model outperforms the benchmark scheme.Our proposed algorithms Ada-CHIO andAda-FBIO,have the low MeanAverage Percentage Error(MAPE)value of error,i.e.,6.8%and 9.5%,respectively.Furthermore,due to the stability of our model our proposed algorithms Ada-CHIO and Ada-FBIO have achieved the accuracy of 93%and 90%.Statistical analysis shows that the hypothesis we proved using statistics is authentic for the proposed technique against benchmark algorithms,which also depicts the superiority of our proposed techniques.展开更多
基金The authors extend their appreciation to Prince Sattam bin Abdulaziz University for funding this research work through the Project Number(PSAU/2023/01/27268).
文摘Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure,thereby revolutionizing computer processes.However,the rising energy consumption in cloud centers poses a significant challenge,especially with the escalating energy costs.This paper tackles this issue by introducing efficient solutions for data placement and node management,with a clear emphasis on the crucial role of the Internet of Things(IoT)throughout the research process.The IoT assumes a pivotal role in this study by actively collecting real-time data from various sensors strategically positioned in and around data centers.These sensors continuously monitor vital parameters such as energy usage and temperature,thereby providing a comprehensive dataset for analysis.The data generated by the IoT is seamlessly integrated into the Hybrid TCN-GRU-NBeat(NGT)model,enabling a dynamic and accurate representation of the current state of the data center environment.Through the incorporation of the Seagull Optimization Algorithm(SOA),the NGT model optimizes storage migration strategies based on the latest information provided by IoT sensors.The model is trained using 80%of the available dataset and subsequently tested on the remaining 20%.The results demonstrate the effectiveness of the proposed approach,with a Mean Squared Error(MSE)of 5.33%and a Mean Absolute Error(MAE)of 2.83%,accurately estimating power prices and leading to an average reduction of 23.88%in power costs.Furthermore,the integration of IoT data significantly enhances the accuracy of the NGT model,outperforming benchmark algorithms such as DenseNet,Support Vector Machine(SVM),Decision Trees,and AlexNet.The NGT model achieves an impressive accuracy rate of 97.9%,surpassing the rates of 87%,83%,80%,and 79%,respectively,for the benchmark algorithms.These findings underscore the effectiveness of the proposed method in optimizing energy efficiency and enhancing the predictive capabilities of cloud computing systems.The IoT plays a critical role in driving these advancements by providing real-time data insights into the operational aspects of data centers.
基金funded by the University of Jeddah,Jeddah,Saudi Arabia,under Grant No.(UJ-22-DR-61).
文摘Effectively managing complex logistics data is essential for development sustainability and growth,especially in optimizing distribution routes.This article addresses the limitations of current logistics path optimization methods,such as inefficiencies and high operational costs.To overcome these drawbacks,we introduce the Hybrid Firefly-Spotted Hyena Optimization(HFSHO)algorithm,a novel approach that combines the rapid exploration and global search abilities of the Firefly Algorithm(FO)with the localized search and region-exploitation skills of the Spotted Hyena Optimization Algorithm(SHO).HFSHO aims to improve logistics path optimization and reduce operational costs.The algorithm’s effectiveness is systematically assessed through rigorous comparative analyses with established algorithms like the Ant Colony Algorithm(ACO),Cuckoo Search Algorithm(CSA)and Jaya Algo-rithm(JA).The evaluation also employs benchmarking methodologies using standardized function sets covering diverse objective functions,including Schwefel’s,Rastrigin,Ackley,Sphere and the ZDT and DTLZ Function suite.HFSHO outperforms these algorithms,achieving a minimum path distance of 546 units,highlighting its prowess in logistics path optimization.This comprehensive evaluation authenticates HFSHO’s exceptional performance across various logistic optimization scenarios.These findings emphasize the critical significance of selecting an appropriate algorithm for logistics path navigation,with HFSHO emerging as an efficient choice.Through the synergistic use of FO and SHO,HFSHO achieves a 15%improvement in convergence,heightened operational efficiency and substantial cost reductions in logistics operations.It presents a promising solution for optimizing logistics paths,offering logistics planners and decision-makers valuable insights and contributing substantively to sustainable sectoral growth.
基金The authors gratefully acknowledge the Deanship of Scientific Research at Najran University in the Kingdom of Saudi Arabia for funding this work through the Research Groups funding program with the Grant Code Number(NU/RG/SERC/11/7).
文摘The smart grid has enabled users to control their home energy more effectively and efficiently.A home energy management system(HEM)is a challenging task because this requires the most effective scheduling of intelligent home appliances to save energy.Here,we presented a meta-heuristic-based HEM system that integrates the Greywolf Algorithm(GWA)and Harmony Search Algorithms(HSA).Moreover,a fusion initiated on HSA and GWA operators is used to optimize energy intake.Furthermore,many knapsacks are being utilized to ensure that peak-hour load usage for electricity customers does not surpass a certain edge.Hybridization has proven beneficial in achieving numerous objectives simultaneously,decreasing the peak-to-average ratio and power prices.Widespread MATLAB simulations are cast-off to evaluate the routine of the anticipated method,Harmony GWA(HGWA).The simulations are for a multifamily housing complex outfitted with various cool gadgets.The simulation results indicate that GWA functions better regarding cost savings than HSA.In reputes of PAR,HSA is significantly more effective than GWA.The suggested method reduces costs for single and ten-house construction by up to 2200.3 PKR,as opposed to 503.4 in GWA,398.10 in HSA and 640.3 in HGWA.The suggested approach performed better than HSA and GWA in PAR reduction.For single-family homes in HGWA,GWA and HSA,the reduction in PAR is 45.79%,21.92%and 20.54%,respectively.The hybrid approach,however,performs better than the currently used nature-inspired techniques in terms of Cost and PAR.
基金The authors acknowledge the support from the Ministry of Education and the Deanship of Scientific Research,Najran University,Saudi Arabia,under code number NU/-/SERC/10/616.
文摘In the Smart Grid(SG)residential environment,consumers change their power consumption routine according to the price and incentives announced by the utility,which causes the prices to deviate from the initial pattern.Thereby,electricity demand and price forecasting play a significant role and can help in terms of reliability and sustainability.Due to the massive amount of data,big data analytics for forecasting becomes a hot topic in the SG domain.In this paper,the changing and non-linearity of consumer consumption pattern complex data is taken as input.To minimize the computational cost and complexity of the data,the average of the feature engineering approaches includes:Recursive Feature Eliminator(RFE),Extreme Gradient Boosting(XGboost),Random Forest(RF),and are upgraded to extract the most relevant and significant features.To this end,we have proposed the DensetNet-121 network and Support Vector Machine(SVM)ensemble with Aquila Optimizer(AO)to ensure adaptability and handle the complexity of data in the classification.Further,the AO method helps to tune the parameters of DensNet(121 layers)and SVM,which achieves less training loss,computational time,minimized overfitting problems and more training/test accuracy.Performance evaluation metrics and statistical analysis validate the proposed model results are better than the benchmark schemes.Our proposed method has achieved a minimal value of the Mean Average Percentage Error(MAPE)rate i.e.,8%by DenseNet-AO and 6%by SVM-AO and the maximum accurateness rate of 92%and 95%,respectively.
文摘One of the major concerns for the utilities in the Smart Grid(SG)is electricity theft.With the implementation of smart meters,the frequency of energy usage and data collection from smart homes has increased,which makes it possible for advanced data analysis that was not previously possible.For this purpose,we have taken historical data of energy thieves and normal users.To avoid imbalance observation,biased estimates,we applied the interpolation method.Furthermore,the data unbalancing issue is resolved in this paper by Nearmiss undersampling technique and makes the data suitable for further processing.By proposing an improved version of Zeiler and Fergus Net(ZFNet)as a feature extraction approach,we had able to reduce the model’s time complexity.To minimize the overfitting issues,increase the training accuracy and reduce the training loss,we have proposed an enhanced method by merging Adaptive Boosting(AdaBoost)classifier with Coronavirus Herd Immunity Optimizer(CHIO)and Forensic based Investigation Optimizer(FBIO).In terms of low computational complexity,minimized over-fitting problems on a large quantity of data,reduced training time and training loss and increased training accuracy,our model outperforms the benchmark scheme.Our proposed algorithms Ada-CHIO andAda-FBIO,have the low MeanAverage Percentage Error(MAPE)value of error,i.e.,6.8%and 9.5%,respectively.Furthermore,due to the stability of our model our proposed algorithms Ada-CHIO and Ada-FBIO have achieved the accuracy of 93%and 90%.Statistical analysis shows that the hypothesis we proved using statistics is authentic for the proposed technique against benchmark algorithms,which also depicts the superiority of our proposed techniques.