With the rise of live streaming on social media, platforms like Facebook, Instagram, and YouTube have become powerful business tools. They enable users to share live videos, fostering direct connections between busine...With the rise of live streaming on social media, platforms like Facebook, Instagram, and YouTube have become powerful business tools. They enable users to share live videos, fostering direct connections between businesses and their customers. This critical literature review paper explores the impact of live streaming on businesses, focusing on its role in attracting and satisfying consumers by promoting products tailored to their needs and wants. It emphasizes live streaming’s crucial role in engaging customers, a key to business growth. The study also provides viable strategies for businesses to leverage live streaming for growth and customer engagement, underscoring its importance in the business landscape.展开更多
In this research work, it has been designed a bionic robot fish structure, can swim underwater. The active compact body is powered by eight sets of symmetric PVC gel actuators with a caudal fin. The robot’s 200 mm-lo...In this research work, it has been designed a bionic robot fish structure, can swim underwater. The active compact body is powered by eight sets of symmetric PVC gel actuators with a caudal fin. The robot’s 200 mm-long, fish structure design incorporates a 55.52 angle to optimize the fish dynamics movement. It’s a fast and smooth operation and can swim. The robot can swim fast and quietly by using the right positions and the appropriate actuators on PVC gel actuators. This design entails a unique architecture that enables the robot to move safely and unobtrusively at the same time, which makes it suitable equipment for different exploration and surveillance missions in the water with speed and silent operation as the foremost concern.展开更多
Exosome is an excellent vesicle for in vivo delivery of therapeutics,including RNAi and chemical drugs.The extremely high efficiency in cancer regression can partly be attributed to its fusion mechanism in delivering ...Exosome is an excellent vesicle for in vivo delivery of therapeutics,including RNAi and chemical drugs.The extremely high efficiency in cancer regression can partly be attributed to its fusion mechanism in delivering therapeutics to cytosol without endosome trapping.However,being composed of a lipidbilayer membrane without specific recognition capacity for aimed-cells,the entry into nonspecific cells can lead to potential side-effects and toxicity.Applying engineering approaches for targeting-capacity to deliver therapeutics to specific cells is desirable.Techniques with chemical modification in vitro and genetic engineering in cells have been reported to decorate exosomes with targeting ligands.RNA nanoparticles have been used to harbor tumor-specific ligands displayed on exosome surface.The negative charge reduces nonspecific binding to vital cells with negatively charged lipid-membrane due to the electrostatic repulsion,thus lowering the side-effect and toxicity.In this review,we focus on the uniqueness of RNA nanoparticles for exosome surface display of chemical ligands,small peptides or RNA aptamers,for specific cancer targeting to deliver anticancer therapeutics,highlighting recent advances in targeted delivery of siRNA and miRNA that overcomes the previous RNAi delivery roadblocks.Proper understanding of exosome engineering with RNA nanotechnology promises efficient therapies for a wide range of cancer subtypes.展开更多
文摘With the rise of live streaming on social media, platforms like Facebook, Instagram, and YouTube have become powerful business tools. They enable users to share live videos, fostering direct connections between businesses and their customers. This critical literature review paper explores the impact of live streaming on businesses, focusing on its role in attracting and satisfying consumers by promoting products tailored to their needs and wants. It emphasizes live streaming’s crucial role in engaging customers, a key to business growth. The study also provides viable strategies for businesses to leverage live streaming for growth and customer engagement, underscoring its importance in the business landscape.
文摘In this research work, it has been designed a bionic robot fish structure, can swim underwater. The active compact body is powered by eight sets of symmetric PVC gel actuators with a caudal fin. The robot’s 200 mm-long, fish structure design incorporates a 55.52 angle to optimize the fish dynamics movement. It’s a fast and smooth operation and can swim. The robot can swim fast and quietly by using the right positions and the appropriate actuators on PVC gel actuators. This design entails a unique architecture that enables the robot to move safely and unobtrusively at the same time, which makes it suitable equipment for different exploration and surveillance missions in the water with speed and silent operation as the foremost concern.
基金supported in part by NIH grants U01CA207946 and R01EB019036 to Peixuan Guo and NIH grant R01CA257961 to Dan Shu and Daniel W.Binzelfunded by the CM Chen Foundationsupported in part by Grant P30CA016058,National Cancer Institute,Bethesda,MD。
文摘Exosome is an excellent vesicle for in vivo delivery of therapeutics,including RNAi and chemical drugs.The extremely high efficiency in cancer regression can partly be attributed to its fusion mechanism in delivering therapeutics to cytosol without endosome trapping.However,being composed of a lipidbilayer membrane without specific recognition capacity for aimed-cells,the entry into nonspecific cells can lead to potential side-effects and toxicity.Applying engineering approaches for targeting-capacity to deliver therapeutics to specific cells is desirable.Techniques with chemical modification in vitro and genetic engineering in cells have been reported to decorate exosomes with targeting ligands.RNA nanoparticles have been used to harbor tumor-specific ligands displayed on exosome surface.The negative charge reduces nonspecific binding to vital cells with negatively charged lipid-membrane due to the electrostatic repulsion,thus lowering the side-effect and toxicity.In this review,we focus on the uniqueness of RNA nanoparticles for exosome surface display of chemical ligands,small peptides or RNA aptamers,for specific cancer targeting to deliver anticancer therapeutics,highlighting recent advances in targeted delivery of siRNA and miRNA that overcomes the previous RNAi delivery roadblocks.Proper understanding of exosome engineering with RNA nanotechnology promises efficient therapies for a wide range of cancer subtypes.