期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Formation of Extended Covalently Bonded Ni Porphyrin Networks on the Au(lll) Surface
1
作者 Sergey A. Krasnikov Catherine M. Doyle +6 位作者 natalia n. sergeeva Alexei B. Preobrajenski nikolay A.Vinogradov Yulia n. sergeeva Alexei A. Zakharov Mathias O. Senge Attilio A. Cafolla 《Nano Research》 SCIE EI CAS CSCD 2011年第4期376-384,共9页
The growth and ordering of {5,10,15,20-tetrakis(4-bromophenyl)porphyrinato}nickel(II) (NiTBrPP) molecules on the Au(111) surface have been investigated using scanning tunnelling microscopy, X-ray absorption, c... The growth and ordering of {5,10,15,20-tetrakis(4-bromophenyl)porphyrinato}nickel(II) (NiTBrPP) molecules on the Au(111) surface have been investigated using scanning tunnelling microscopy, X-ray absorption, core-level photoemission, and microbeam low-energy electron diffraction. When deposited onto the substrate at room temperature, the NiTBrPP forms a well-ordered close-packed molecular layer in which the molecules have a flat orientation with the porphyrin macrocycle plane lying parallel to the substrate. Annealing of the NiTBrPP layer on the Au(111) surface at 525 K leads to dissociation of bromine from the porphyrin followed by the formation of covalent bonds between the phenyl substituents of the porphyrin. This results in the formation of continuous covalently bonded porphyrin networks, which are stable up to 800 K and can be recovered after exposure to ambient conditions. By controlling the experimental conditions, a robust, extended porphyrin network can be prepared on the Au(111) surface that has many potential applications such as protective coatings, in sensing or as a host structure for molecules and clusters. 展开更多
关键词 PORPHYRINS covalently bonded networks scanning tunnelling microscopy X-ray photoemission spectroscopy near-edge X-ray absorption fine structure Au(111)
原文传递
Writing with atoms: Oxygen adatoms on the MoO2/Mo(110) surface
2
作者 Sergey A. Krasnikov Olaf Lubben +5 位作者 Barry E. Murphy Sergey I. Bozhko Alexander n. Chaika natalia n. sergeeva Brendan Bulfin and Igor V. Shvets 《Nano Research》 SCIE EI CAS CSCD 2013年第12期929-937,共9页
Writing at the nanoscale using the desorption of oxygen adatoms from the oxygen-rich MoO2+x/Mo(110) surface is demonstrated by scanning tunnelling microscopy (STM). High-temperature oxidation of the Mo(110) sur... Writing at the nanoscale using the desorption of oxygen adatoms from the oxygen-rich MoO2+x/Mo(110) surface is demonstrated by scanning tunnelling microscopy (STM). High-temperature oxidation of the Mo(110) surface results in a strained, bulk-like MOO2(010) ultra-thin film with an O-Mo-O trilayer structure. Due to the lattice mismatch between the Mo(110) and the MOO2(010), the latter consists of well-ordered molybdenum oxide nanorows separated by 2.5 nm. The MoO2(010)/Mo(110) structure is confirmed by STM data and density functional theory calculations. Further oxidation results in the oxygen-rich MoOa^x/Mo(110) surface, which exhibits perfectly aligned double rows of oxygen adatoms, imaged by STM as bright protrusions. These adatoms can be removed from the surface by scanning (or pulsing) at positive sample biases greater than 1.5 V. Tip movement along the surface can be used for controlled lithography (or writing) at the nanoscale, with a minimum feature size of just 3 nm. By moving the STM tip in a predetermined fashion, information can be written and read by applying specific biases between the surface and the tip. 展开更多
关键词 scanning tunnellingmicroscopy inelastic tunnelling atom manipulation molybdenum oxide
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部