The microstructure and precipitated phases of as-cast Mg-5Y-1.5Nd-x Zn-0.5Zr(x=0,2,4,6 wt.%)alloys were investigated by optical microscopy,scanning electron microscopy,energy-dispersive spectrometry and X-ray Diffract...The microstructure and precipitated phases of as-cast Mg-5Y-1.5Nd-x Zn-0.5Zr(x=0,2,4,6 wt.%)alloys were investigated by optical microscopy,scanning electron microscopy,energy-dispersive spectrometry and X-ray Diffraction.The exposure corrosion experiment of these magnesium alloys was tested in South China Sea and KEXUE vessel atmospheric environment.The corrosion characteristic and mechanism of magnesium alloys of Mg-5Y-1.5Nd-x Zn-0.5Zr(x=0,2,4,6 wt.%)alloys were analyzed by weight loss rate,corrosion depth,corrosion products and corrosion morphologies.The electrochemical corrosion tests were also measured in the natural seawater.The comprehensive results showed that Mg-5Y-1.5Nd-4Zn-0.5Zr magnesium alloy existed the best corrosion resistance whether in the marine atmospheric environment and natural seawater environment.That depended on the microstructure,type and distribution of precipitated phases in Mg-5Y-1.5Nd-4Zn-0.5Zr magnesium alloy.Sufficient quantity anodic precipitated phases in the microstructure of Mg-5Y-1.5Nd-4Zn-0.5Zr alloy played the key role in the corrosion resistance.展开更多
Pure Zn coatings easily lose their protective performance after biofouling because they have no antibacterial effect under visible light.In this study,we fabricate a new antibacterial Zn composite coating using electr...Pure Zn coatings easily lose their protective performance after biofouling because they have no antibacterial effect under visible light.In this study,we fabricate a new antibacterial Zn composite coating using electrodeposition to couple Fe3+-doped alkalized g-C_(3)N_(4)(AKCN-Fe)into an existing Zn coating and show that the AKCN-Fe enhances antibacterial property of the Zn coating under visible light.We attribute this enhancement to the high photocatalytic performance,high loading content,and good dispersion of AKCN-Fe.In addition,the photocatalytic antibacterial mechanism of the composite coating is supported by scavenger experiments and electron paramagnetic resonance(EPR)measurements,suggesting that superoxide(·O_(2)^(-))and hydroxyl radical(·OH)play main and secondary roles,respectively.展开更多
Novel C-BiOCl/Bi_(2)S_(3) composites are prepared by hydrothermal C doping in BiOCl and in-situ growth of Bi_(2)S_(3) on C-BiOCl.Compared with BiOCl,C-BiOCl has a larger exposed surface area and can effectively absorb...Novel C-BiOCl/Bi_(2)S_(3) composites are prepared by hydrothermal C doping in BiOCl and in-situ growth of Bi_(2)S_(3) on C-BiOCl.Compared with BiOCl,C-BiOCl has a larger exposed surface area and can effectively absorb visible light.The construction of a heterojunction in C-BiOCl/Bi_(2)S_(3) further promotes the separation and transfer of photogenerated carriers.With improved photoelectric properties,the optimized 5C-BiOCl/5Bi_(2)S_(3) is applied as a dual-functional composite for photoelectrochemical(PEC)detection and photocatalytic(PC)reduction of Cr(VI).The 5C-BiOCl/5Bi_(2)S_(3) shows a linear range of 0.02-80μM for PEC cathodic detection of Cr(VI)with a detection limit of 0.01628μM.Additionally,99.5%of Cr(VI)can be removed via absorption and PC reduction by 5C-BiOCl/5Bi_(2)S_(3),with the reduction rate constant(k)336 times higher than that of BiOCl.展开更多
Lysosomal polarity is considered a key indicator of lysosomal function due to its significant impact on membrane fluidity and enzymatic reactions in lysosomes. Monitoring lysosomal polarity can gain insight into the r...Lysosomal polarity is considered a key indicator of lysosomal function due to its significant impact on membrane fluidity and enzymatic reactions in lysosomes. Monitoring lysosomal polarity can gain insight into the related physiological and pathological processes and develop new diagnostic methods. However, current fluorescent probes with lysosomal polarity response suffer from narrow linear range, photobleaching and complicated preparation. Herein, a ratiometric fluorescent probe(r-b CDs) for intracellular lysosomal polarity imaging is designed and constructed by amide bond assembly of polarity-sensitive red fluorescent carbon dots(r CDs) and referenced blue fluorescent carbon dots(b CDs). r-b CDs show a much wider linear range of polarity response(orientation polarizability Δf from 0.020 to 0.315) than other probes, and the interference of uneven distribution and instrument factors can be effectively eliminated by ratiometric fluorescent sensing. Imaging of intracellular lysosomal polarity with r-b CDs is implemented to observe the polarity variation caused by the change of cell state and the difference between cancer cells and normal cells. This work provides a promising tool for studying the related physiological and pathological processes and developing new diagnostic methods.展开更多
基金National Natural Science Foundation of China for Exploring Key Scientific Instrument(No.41827805)the Open Funds of the State Key Laboratory of Rare Earth Resource Utilization(No.RERU2021017)Hainan Province Science and Technology Special Fund(ZDYF2021GXJS210)for providing support。
文摘The microstructure and precipitated phases of as-cast Mg-5Y-1.5Nd-x Zn-0.5Zr(x=0,2,4,6 wt.%)alloys were investigated by optical microscopy,scanning electron microscopy,energy-dispersive spectrometry and X-ray Diffraction.The exposure corrosion experiment of these magnesium alloys was tested in South China Sea and KEXUE vessel atmospheric environment.The corrosion characteristic and mechanism of magnesium alloys of Mg-5Y-1.5Nd-x Zn-0.5Zr(x=0,2,4,6 wt.%)alloys were analyzed by weight loss rate,corrosion depth,corrosion products and corrosion morphologies.The electrochemical corrosion tests were also measured in the natural seawater.The comprehensive results showed that Mg-5Y-1.5Nd-4Zn-0.5Zr magnesium alloy existed the best corrosion resistance whether in the marine atmospheric environment and natural seawater environment.That depended on the microstructure,type and distribution of precipitated phases in Mg-5Y-1.5Nd-4Zn-0.5Zr magnesium alloy.Sufficient quantity anodic precipitated phases in the microstructure of Mg-5Y-1.5Nd-4Zn-0.5Zr alloy played the key role in the corrosion resistance.
基金financially supported by the National Natural Science Foundation of China(No.41706080)the Basic Frontier Science Research Program of the Chinese Academy of Sciences(No.ZDBS-LYDQC025)+1 种基金the Strategic Leading Science and Technology Program of the Chinese Academy of Sciences(No.XDA13040403)the Shandong Key Laboratory of Corrosion Science。
文摘Pure Zn coatings easily lose their protective performance after biofouling because they have no antibacterial effect under visible light.In this study,we fabricate a new antibacterial Zn composite coating using electrodeposition to couple Fe3+-doped alkalized g-C_(3)N_(4)(AKCN-Fe)into an existing Zn coating and show that the AKCN-Fe enhances antibacterial property of the Zn coating under visible light.We attribute this enhancement to the high photocatalytic performance,high loading content,and good dispersion of AKCN-Fe.In addition,the photocatalytic antibacterial mechanism of the composite coating is supported by scavenger experiments and electron paramagnetic resonance(EPR)measurements,suggesting that superoxide(·O_(2)^(-))and hydroxyl radical(·OH)play main and secondary roles,respectively.
基金supported by the National Natural Science Foundation of China(Nos.51901222,41827805)the CAS Pioneer Hundred Talents Program,and the Shandong Province Higher Educational Program for Introduction and Cultivation of Young Innovative Talents(2021).
文摘Novel C-BiOCl/Bi_(2)S_(3) composites are prepared by hydrothermal C doping in BiOCl and in-situ growth of Bi_(2)S_(3) on C-BiOCl.Compared with BiOCl,C-BiOCl has a larger exposed surface area and can effectively absorb visible light.The construction of a heterojunction in C-BiOCl/Bi_(2)S_(3) further promotes the separation and transfer of photogenerated carriers.With improved photoelectric properties,the optimized 5C-BiOCl/5Bi_(2)S_(3) is applied as a dual-functional composite for photoelectrochemical(PEC)detection and photocatalytic(PC)reduction of Cr(VI).The 5C-BiOCl/5Bi_(2)S_(3) shows a linear range of 0.02-80μM for PEC cathodic detection of Cr(VI)with a detection limit of 0.01628μM.Additionally,99.5%of Cr(VI)can be removed via absorption and PC reduction by 5C-BiOCl/5Bi_(2)S_(3),with the reduction rate constant(k)336 times higher than that of BiOCl.
基金financially supported by the National Natural Science Foundation of China (Nos.21922402,21874017 and 21727811)the Fundamental Research Funds for the Central Universities (No.N2005027)。
文摘Lysosomal polarity is considered a key indicator of lysosomal function due to its significant impact on membrane fluidity and enzymatic reactions in lysosomes. Monitoring lysosomal polarity can gain insight into the related physiological and pathological processes and develop new diagnostic methods. However, current fluorescent probes with lysosomal polarity response suffer from narrow linear range, photobleaching and complicated preparation. Herein, a ratiometric fluorescent probe(r-b CDs) for intracellular lysosomal polarity imaging is designed and constructed by amide bond assembly of polarity-sensitive red fluorescent carbon dots(r CDs) and referenced blue fluorescent carbon dots(b CDs). r-b CDs show a much wider linear range of polarity response(orientation polarizability Δf from 0.020 to 0.315) than other probes, and the interference of uneven distribution and instrument factors can be effectively eliminated by ratiometric fluorescent sensing. Imaging of intracellular lysosomal polarity with r-b CDs is implemented to observe the polarity variation caused by the change of cell state and the difference between cancer cells and normal cells. This work provides a promising tool for studying the related physiological and pathological processes and developing new diagnostic methods.