The response of tunnels subjected to seismic loading is a complex mechanism and depends not only on the seismic nature but also on tunnel structure and surrounding soil properties.The individual behavior of circular,r...The response of tunnels subjected to seismic loading is a complex mechanism and depends not only on the seismic nature but also on tunnel structure and surrounding soil properties.The individual behavior of circular,rectangular,and sub-rectangular tunnels subjected to seismic loadings has already been studied in the literature.In the present research,two case scenarios of circular,rectangular tunnels and four sub-rectangular shaped tunnels,with similar cross-section areas,were adopted to perform a comprehensive numerical investigation.The purpose of the study was to determine the mechanical behavior of tunnels of different shapes,depending upon seismic conditions.Analyses were performed by considering the influence of soil-lining interaction,soil parameters,and lining thickness,as well as lining rigidity.Computations were performed for no-slip and full-slip conditions.The results indicate that the tunnel shape design is of great importance when regarding the mechanical behavior of the surrounding soil.This concerns no-slip as well as full-slip soil-lining interaction,especially when the lining is subjected to seismic loading.Moreover,it is shown that changes in incremental bending moments for circular,rectangular and sub-rectangular tunnels that depend upon the soil-lining interaction conditions differ significantly.展开更多
The amount of tunnels excavated along stratified/sedimentary rock masses in Quangninh coal mine area,Vietnam, is gradually increasing. Rock mass in Quangninh is characterized by beddings between rock layers. The behav...The amount of tunnels excavated along stratified/sedimentary rock masses in Quangninh coal mine area,Vietnam, is gradually increasing. Rock mass in Quangninh is characterized by beddings between rock layers. The behavior of stratified rock masses surrounding the tunnels depends on both the intact rock and the beddings between rock layers. The main characteristics of stratified rock masses that need to be considered are their heterogeneity and anisotropy. Depending on the dip angle of rock layers, movements and failure zones developed surrounding the tunnels can be asymmetrical over the vertical axis of tunnel. This asymmetry causes adverse behaviors of the tunnel structures. The objective of this study is to highlight convergences and yielded zones developed in rock masses surrounding noncircular tunnels in Quangninh coal mine area using a finite element method. The presence of bedding joints is explicitly simulated. The numerical results indicated that with the increase in dip angle of bedding joints, the stress asymmetry over the tunnel vertical axis increases. It gradually leads to an asymmetry of the failure zone surrounding the tunnel. An increase of rock mass quality means a decrease of rock mass sensitivity to the discontinuities. In addition,a dip angle of the bedding joints of approximately 45° could be considered as the critical angle at which the rock mass mechanism changes between sliding and bending.展开更多
基金supported by Vietnam Ministry of Education and Training under Grant No. B2022-MDA-06
文摘The response of tunnels subjected to seismic loading is a complex mechanism and depends not only on the seismic nature but also on tunnel structure and surrounding soil properties.The individual behavior of circular,rectangular,and sub-rectangular tunnels subjected to seismic loadings has already been studied in the literature.In the present research,two case scenarios of circular,rectangular tunnels and four sub-rectangular shaped tunnels,with similar cross-section areas,were adopted to perform a comprehensive numerical investigation.The purpose of the study was to determine the mechanical behavior of tunnels of different shapes,depending upon seismic conditions.Analyses were performed by considering the influence of soil-lining interaction,soil parameters,and lining thickness,as well as lining rigidity.Computations were performed for no-slip and full-slip conditions.The results indicate that the tunnel shape design is of great importance when regarding the mechanical behavior of the surrounding soil.This concerns no-slip as well as full-slip soil-lining interaction,especially when the lining is subjected to seismic loading.Moreover,it is shown that changes in incremental bending moments for circular,rectangular and sub-rectangular tunnels that depend upon the soil-lining interaction conditions differ significantly.
基金funded by the Vietnamese National Foundation for Science and Technology Development(NAFOSTED)(Grant No.105.08-2015.14)
文摘The amount of tunnels excavated along stratified/sedimentary rock masses in Quangninh coal mine area,Vietnam, is gradually increasing. Rock mass in Quangninh is characterized by beddings between rock layers. The behavior of stratified rock masses surrounding the tunnels depends on both the intact rock and the beddings between rock layers. The main characteristics of stratified rock masses that need to be considered are their heterogeneity and anisotropy. Depending on the dip angle of rock layers, movements and failure zones developed surrounding the tunnels can be asymmetrical over the vertical axis of tunnel. This asymmetry causes adverse behaviors of the tunnel structures. The objective of this study is to highlight convergences and yielded zones developed in rock masses surrounding noncircular tunnels in Quangninh coal mine area using a finite element method. The presence of bedding joints is explicitly simulated. The numerical results indicated that with the increase in dip angle of bedding joints, the stress asymmetry over the tunnel vertical axis increases. It gradually leads to an asymmetry of the failure zone surrounding the tunnel. An increase of rock mass quality means a decrease of rock mass sensitivity to the discontinuities. In addition,a dip angle of the bedding joints of approximately 45° could be considered as the critical angle at which the rock mass mechanism changes between sliding and bending.