期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Generating highly active oxide-phosphide heterostructure through interfacial engineering to break the energy scaling relation toward urea-assisted natural seawater electrolysis
1
作者 ngoc quang tran Nam Hoang Vu +6 位作者 Jianmin Yu Khanh Vy Pham Nguyen Thuy Tien Nguyen tran Thuy-Kieu Truong Lishan Peng Thi Anh Le Yoshiyuki Kawazoe 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期687-699,I0014,共14页
Urea-assisted natural seawater electrolysis is an emerging technology that is effective for grid-scale carbon-neutral hydrogen mass production yet challenging.Circumventing scaling relations is an effective strategy t... Urea-assisted natural seawater electrolysis is an emerging technology that is effective for grid-scale carbon-neutral hydrogen mass production yet challenging.Circumventing scaling relations is an effective strategy to break through the bottleneck of natural seawater splitting.Herein,by DFT calculation,we demonstrated that the interface boundaries between Ni_(2)P and MoO_(2) play an essential role in the selfrelaxation of the Ni-O interfacial bond,effectively modulating a coordination number of intermediates to control independently their adsorption-free energy,thus circumventing the adsorption-energy scaling relation.Following this conceptual model,a well-defined 3D F-doped Ni_(2)P-MoO_(2) heterostructure microrod array was rationally designed via an interfacial engineering strategy toward urea-assisted natural seawater electrolysis.As a result,the F-Ni_(2)P-MoO_(2) exhibits eminently active and durable bifunctional catalysts for both HER and OER in acid,alkaline,and alkaline sea water-based electrolytes.By in-situ analysis,we found that a thin amorphous layer of NiOOH,which is evolved from the Ni_(2)P during anodic reaction,is real catalytic active sites for the OER and UOR processes.Remarkable,such electrode-assembled urea-assisted natural seawater electrolyzer requires low voltages of 1.29 and 1.75 V to drive 10 and600 mA cm^(-2)and demonstrates superior durability by operating continuously for 100 h at 100 mA cm^(-2),beyond commercial Pt/C||RuO_(2) and most previous reports. 展开更多
关键词 Interfacial engineering Break scaling relationships Doping Natural seawater splitting Urea electrolysis
下载PDF
Exploring catalytic behaviors of CoS_(2)-ReS_(2) heterojunction by interfacial engineering
2
作者 Jianmin Yu Yongteng Qian +12 位作者 Sohyeon Seo Yang Liu Huong T.D.Bui ngoc quang tran Jinsun Lee Ashwani Kumar Hongdan Wang Yongguang Luo Xiaodong Shao Yunhee Cho Xinghui Liu Min Gyu Kim Hyoyoung Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期11-18,I0002,共9页
Herein, a stable and efficient CoS_(2)-ReS_(2) electrocatalyst is successfully constructed by using the different molar ratios of CoS_(2) on ReS_(2). The size and morphology of the catalysts are significantly changed ... Herein, a stable and efficient CoS_(2)-ReS_(2) electrocatalyst is successfully constructed by using the different molar ratios of CoS_(2) on ReS_(2). The size and morphology of the catalysts are significantly changed after the CoS_(2) is grown on ReS_(2), providing regulation of the catalytic activity of ReS_(2). Particularly, the optimized CoS_(2)-ReS_(2) shows superior electrocatalytic properties with a low voltage of 1.48 V at 20 mA cm^(-2) for overall water splitting in 1.0 M KOH, which is smaller than the noble metal-based catalysts(1.77 V at 20 mA cm^(-2)). The XPS, XAS, and theoretical data confirm that the interfacial regulation of ReS_(2) by CoS_(2) can provide rich edge catalytic sites, which greatly optimizes the catalytic kinetics and drop the energy barrier for oxygen/hydrogen evolution reactions. Our results demonstrated that interfacial engineering is an efficient route for fabricating high-performance water splitting electrocatalysts. 展开更多
关键词 CoS_(2) ReS_(2) Interfacial engineering Catalytic kinetics Water splitting
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部