In 1996, C. C. Yang and P. C. Hu [8] showed that: Let f be a transcendental meromorphic function on the complex plane, and a ≠ 0 be a complex number; then assume that n 〉 2, n1,… , nk are nonnegative integers such...In 1996, C. C. Yang and P. C. Hu [8] showed that: Let f be a transcendental meromorphic function on the complex plane, and a ≠ 0 be a complex number; then assume that n 〉 2, n1,… , nk are nonnegative integers such that n1+… + nk ≥1; thus fn(f′)n1…(f(k))nk-a has infinitely zeros. The aim of this article is to study the value distribution of differential polynomial, which is an extension of the result of Yang and Hu for small function and all zeros of f having multiplicity at least k ≥2. Namely, we prove that fn(f′)n1…(f(k))nk-a(z) has infinitely zeros, where f is a transcendental meromorphic function on the complex plane whose all zeros have multiplicity at least k≥ 2, and a(z) 0 is a small function of f and n ≥ 2, n1,… ,nk are nonnegative integers satisfying n1+ …+ nk ≥1. Using it, we establish some normality criterias for a family of meromorphic functions under a condition where differential polynomials generated by the members of the family share a holomorphic function with zero points. The results of this article are supplement of some problems studied by d. Yunbo and G. Zongsheng [6], and extension of some problems studied X. Wu and Y. Xu [10]. The main result of this article also leads to a counterexample to the converse of Bloeh's principle.展开更多
Let π=π1-π2 be the difference of two independent proportions related to two populations. We study the test H0:π≥0 against different alternatives, in the Bayesian context. The various Bayesian approaches use stand...Let π=π1-π2 be the difference of two independent proportions related to two populations. We study the test H0:π≥0 against different alternatives, in the Bayesian context. The various Bayesian approaches use standard beta distributions, and are simple to derive and compute. But the more general test H0:π≥η, with η>0, requires more advanced mathematical tools to carry out the computations. These tools, which include the density of the difference of two general beta variables, are presented in the article, with numerical examples for illustrations to facilitate comprehension of results.展开更多
基金funded by Vietnam National Foundation for Science and Technology Development(NAFOSTED)under grant number 101.04-2014.41the Vietnam Institute for Advanced Study in Mathematics for financial support
文摘In 1996, C. C. Yang and P. C. Hu [8] showed that: Let f be a transcendental meromorphic function on the complex plane, and a ≠ 0 be a complex number; then assume that n 〉 2, n1,… , nk are nonnegative integers such that n1+… + nk ≥1; thus fn(f′)n1…(f(k))nk-a has infinitely zeros. The aim of this article is to study the value distribution of differential polynomial, which is an extension of the result of Yang and Hu for small function and all zeros of f having multiplicity at least k ≥2. Namely, we prove that fn(f′)n1…(f(k))nk-a(z) has infinitely zeros, where f is a transcendental meromorphic function on the complex plane whose all zeros have multiplicity at least k≥ 2, and a(z) 0 is a small function of f and n ≥ 2, n1,… ,nk are nonnegative integers satisfying n1+ …+ nk ≥1. Using it, we establish some normality criterias for a family of meromorphic functions under a condition where differential polynomials generated by the members of the family share a holomorphic function with zero points. The results of this article are supplement of some problems studied by d. Yunbo and G. Zongsheng [6], and extension of some problems studied X. Wu and Y. Xu [10]. The main result of this article also leads to a counterexample to the converse of Bloeh's principle.
文摘Let π=π1-π2 be the difference of two independent proportions related to two populations. We study the test H0:π≥0 against different alternatives, in the Bayesian context. The various Bayesian approaches use standard beta distributions, and are simple to derive and compute. But the more general test H0:π≥η, with η>0, requires more advanced mathematical tools to carry out the computations. These tools, which include the density of the difference of two general beta variables, are presented in the article, with numerical examples for illustrations to facilitate comprehension of results.