Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi...Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.展开更多
Background: The mechanisms by which acupuncture affects poststroke cognitive impairment (PSCI) remain unclear. Objective: To investigate brain functional network (BFN) changes in patients with PSCI after acupuncture t...Background: The mechanisms by which acupuncture affects poststroke cognitive impairment (PSCI) remain unclear. Objective: To investigate brain functional network (BFN) changes in patients with PSCI after acupuncture therapy. Methods: Twenty-two PSCI patients who underwent acupuncture therapy in our hospital were enrolled as research subjects. Another 14 people matched for age, sex, and education level were included in the normal control (HC) group. All the subjects underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans;the PSCI patients underwent one scan before acupuncture therapy and another after. The network metric difference between PSCI patients and HCs was analyzed via the independent-sample t test, whereas the paired-sample t test was employed to analyze the network metric changes in PSCI patients before vs. after treatment. Results: Small-world network attributes were observed in both groups for sparsities between 0.1 and 0.28. Compared with the HC group, the PSCI group presented significantly lower values for the global topological properties (γ, Cp, and Eloc) of the brain;significantly greater values for the nodal attributes of betweenness centrality in the CUN. L and the HES. R, degree centrality in the SFGdor. L, PCG. L, IPL. L, and HES. R, and nodal local efficiency in the ORBsup. R, ORBsupmed. R, DCG. L, SMG. R, and TPOsup. L;and decreased degree centrality in the MFG. R, IFGoperc. R, and SOG. R. After treatment, PSCI patients presented increased degree centrality in the LING.L, LING.R, and IOG. L and nodal local efficiency in PHG. L, IOG. R, FFG. L, and the HES. L, and decreased betweenness centrality in the PCG. L and CUN. L, degree centrality in the ORBsupmed. R, and nodal local efficiency in ANG. R. Conclusion: Cognitive decline in PSCI patients may be related to BFN disorders;acupuncture therapy may modulate the topological properties of the BFNs of PSCI patients.展开更多
Implantable hydrogel-based bioelectronics(IHB)can precisely monitor human health and diagnose diseases.However,achieving biodegradability,biocompatibility,and high conformality with soft tissues poses significant chal...Implantable hydrogel-based bioelectronics(IHB)can precisely monitor human health and diagnose diseases.However,achieving biodegradability,biocompatibility,and high conformality with soft tissues poses significant challenges for IHB.Gelatin is the most suitable candidate for IHB since it is a collagen hydrolysate and a substantial part of the extracellular matrix found naturally in most tissues.This study used 3D printing ultrafine fiber networks with metamaterial design to embed into ultra-low elastic modulus hydrogel to create a novel gelatin-based conductive film(GCF)with mechanical programmability.The regulation of GCF nearly covers soft tissue mechanics,an elastic modulus from 20 to 420 kPa,and a Poisson’s ratio from-0.25 to 0.52.The negative Poisson’s ratio promotes conformality with soft tissues to improve the efficiency of biological interfaces.The GCF can monitor heartbeat signals and respiratory rate by determining cardiac deformation due to its high conformability.Notably,the gelatin characteristics of the biodegradable GCF enable the sensor to monitor and support tissue restoration.The GCF metamaterial design offers a unique idea for bioelectronics to develop implantable sensors that integrate monitoring and tissue repair and a customized method for endowing implanted sensors to be highly conformal with soft tissues.展开更多
Understanding how summer warming influences the parent and daughter shoot production in a perennial clonal grass is vital for comprehending the response of grassland productivity to global warming.Here,we conducted a s...Understanding how summer warming influences the parent and daughter shoot production in a perennial clonal grass is vital for comprehending the response of grassland productivity to global warming.Here,we conducted a simulated experiment using potted Leymus chinensis,to study the relationship between the photosynthetic activ-ity of parent shoots and the production of daughter shoots under a whole(90 days)summer warming scenario(+3°C).The results showed that the biomass of parents and buds decreased by 25.52%and 33.45%,respectively,under warming conditions.The reduction in parent shoot biomass due to warming directly resulted from decreased leaf area(18.03%),chlorophyll a(18.27%),chlorophyll b(29.21%)content,as well as a reduction in net photosynthetic rate(7.32%)and the maximum quantum efficiency of photosystem II(PSII)photochemistry(4.29%).The decline in daughter shoot biomass was linked to a decrease in daughter shoot number(33.33%)by warming.However,the number of belowground buds increased by 46.43%.The results indicated that long-term summer warming reduces biomass accumulation in parent shoot by increasing both limitation of stoma and non-stoma.Consequently,the parent shoot allocates relatively more biomass to the belowground organs to maintain the survival and growth of buds.Overall,buds,as a potential aboveground population,could remedy for the cur-rent loss of parent shoot density by increasing the number of future daughter shoots if summer warming subsides.展开更多
Light-emitting diodes based on lead halide perovskite have attracted great attention due to their outstanding performance.However,their application is plagued by the toxicity of Pb and the poor stability.Herein novel ...Light-emitting diodes based on lead halide perovskite have attracted great attention due to their outstanding performance.However,their application is plagued by the toxicity of Pb and the poor stability.Herein novel copper-based all inorganic perovskite CsCu2I3 with much enhanced stability has been reported with a potential photoluminescence quantum yield(PLQY)over 20%and self-trapped excitons(STE).By taking advantage of its extraordinary thermal stability,we successfully fabricate high-quality CsCu2I3 film through direct vacuum-based deposition(VBD)of CsCu2I3 powder.The resulting film shows almost the same PLQY with the synthesized powder,as well as excellent uniformity and stability.The perovskite light-emitting diodes(Pe-LED)based on the evaporated CsCu2I3 emitting layer achieve a luminescence of 10 cd/m2 and an external quantum efficiency(EQE)of 0.02%.To the best of our knowledge,this is the first CsCu2I3 Pe-LED fabricated by VBD with STE property,which offers a new avenue for lead-free Pe-LED.展开更多
Background It is unclear whether catheter ablation(CA)for atrial fibrillation(AF)affects the long-term prognosis in the elderly.This study aims to evaluate the relationship between CA and long-term outcomes in elderly...Background It is unclear whether catheter ablation(CA)for atrial fibrillation(AF)affects the long-term prognosis in the elderly.This study aims to evaluate the relationship between CA and long-term outcomes in elderly patients with AF.Methods Patients more than 75 years old with non-valvular AF were prospectively enrolled between August 2011 and December 2017 in the Chinese Atrial Fibrillation Registry Study.Participants who underwent CA at baseline were propensity score matched(1:1)with those who did not receive CA.The outcome events included all-cause mortality,cardiovascular mortality,stroke/transient ischemic attack(TIA),and cardiovascular hospitalization.Results Overall,this cohort included 571 ablated patients and 571 non-ablated patients with similar characteristics on 18 dimensions.During a mean follow-up of 39.75±19.98 months(minimum six months),24 patients died in the ablation group,compared with 60 deaths in the non-ablation group[hazard ratio(HR)=0.49,95%confidence interval(CI):0.30-0.79,P=0.0024].Besides,6 ablated and 29 non-ablated subjects died of cardiovascular disease(HR=0.25,95%CI:0.11-0.61,P=0.0022).A total of 27 ablated and 40 non-ablated patients suffered stroke/TIA(HR=0.79,95%CI:0.48-1.28,P=0.3431).In addition,140 ablated and 194 non-ablated participants suffered cardiovascular hospitalization(HR=0.84,95%CI:0.67-1.04,P=0.1084).Subgroup analyses according to gender,type of AF,time since onset of AF,and anticoagulants exposure in initiation did not show significant heterogeneity.Conclusions In elderly patients with AF,CA may be associated with a lower incidence of all-cause and cardiovascular mortality.展开更多
To promote the utilization of renewable energy,such as photovoltaics,this paper proposes an optimal flexibility dispatch method for demand-side resources(DSR)based on the Stackelberg game theory.First,the concept of t...To promote the utilization of renewable energy,such as photovoltaics,this paper proposes an optimal flexibility dispatch method for demand-side resources(DSR)based on the Stackelberg game theory.First,the concept of the generalized DSR is analyzed and flexibility models for various DSR are constructed.Second,owing to the characteristics of small capacity but large-scale,an outer approximation is proposed to describe the aggregate flexibility of DSR.Then,the optimal flexibility dispatch model of DSR based on the Stackelberg game is established and a decentralized solution algorithm is designed to obtain the Stackelberg equilibrium.Finally,the actual data are utilized for the case study and the results show that,compared to the traditional centralized optimization method,the proposed optimal flexibility dispatch method can not only reduce the net load variability of the DSR aggregator but is beneficial for all DSR owners,which is more suitable for practical applications.展开更多
Recently,video object segmentation has received great attention in the computer vision community.Most of the existing methods heavily rely on the pixel-wise human annotations,which are expensive and time-consuming to ...Recently,video object segmentation has received great attention in the computer vision community.Most of the existing methods heavily rely on the pixel-wise human annotations,which are expensive and time-consuming to obtain.To tackle this problem,we make an early attempt to achieve video object segmentation with scribble-level supervision,which can alleviate large amounts of human labor for collecting the manual annotation.However,using conventional network architectures and learning objective functions under this scenario cannot work well as the supervision information is highly sparse and incomplete.To address this issue,this paper introduces two novel elements to learn the video object segmentation model.The first one is the scribble attention module,which captures more accurate context information and learns an effective attention map to enhance the contrast between foreground and background.The other one is the scribble-supervised loss,which can optimize the unlabeled pixels and dynamically correct inaccurate segmented areas during the training stage.To evaluate the proposed method,we implement experiments on two video object segmentation benchmark datasets,You Tube-video object segmentation(VOS),and densely annotated video segmentation(DAVIS)-2017.We first generate the scribble annotations from the original per-pixel annotations.Then,we train our model and compare its test performance with the baseline models and other existing works.Extensive experiments demonstrate that the proposed method can work effectively and approach to the methods requiring the dense per-pixel annotations.展开更多
Peanut(Arachis hypogaea L.)is an important oil and cash crop in the world.Peanut germplasm collected in China are abundant,which provides important material guarantee for peanut breeding and industrial development.Her...Peanut(Arachis hypogaea L.)is an important oil and cash crop in the world.Peanut germplasm collected in China are abundant,which provides important material guarantee for peanut breeding and industrial development.Here,the safe conservation technology and indicators of peanut germplasm resources in the Oil Crops Middleterm Genebank of China were expounded from three processes of storage,monitoring,reproduction and renewal.We summarized and reviewed the situation of conservation and utilization of peanut germplasm resources in the Middle-term Genebank in the past 20 years.The future research direction of peanut resources in the Oil Crops Middle-term Genebank of China is prospected.展开更多
microRNA 160(miR160),targeting auxin response factors(ARFs),plays many roles in plant development.We investigated the role of the mi R160/ARF axis in regulation of cotton seed size.Suppressing mi R160 activity,specifi...microRNA 160(miR160),targeting auxin response factors(ARFs),plays many roles in plant development.We investigated the role of the mi R160/ARF axis in regulation of cotton seed size.Suppressing mi R160 activity,specifically in the seed coat,led to smaller seeds and less fiber production owing to attenuated growth of the maternal integument.Scanning electron microscopy and histology showed that expansion of cells in the integument was retarded in mi R160-suppressed lines.Four Gh ARF genes were targeted by mi R160 and were upregulated in mi R160-suppressed lines,indicating that a mi R160/ARF axis is present in cotton.Five genes(Ghir_A05 G003740,Scaffold1878 G000010,Ghir_D09 G024980,Ghir_A11 G010730,and Ghir_A05 G041590),associated with reduced seed development were downregulated in mi R160-suppressed lines.Our results suggest that the mi R160/ARF axis controls maternal integument growth to influence seed size by directly or indirectly regulating seed development-associated genes.展开更多
Objective To compare the asbestos-induced DNA damage and repair capacities of DNA damage between 104 asbestosexposed workers and 101 control workers in Qingdao City of China and to investigate the possible association...Objective To compare the asbestos-induced DNA damage and repair capacities of DNA damage between 104 asbestosexposed workers and 101 control workers in Qingdao City of China and to investigate the possible association between polymorphisms in codon 399 of XRCC1 and susceptibility to asbestosis. Methods DNA damage levels in peripheral blood lymphocytes were determined by comet assay, and XRCC1 genetic polymorphisms of DNA samples from 51 asbestosis cases and 53 non-asbestosis workers with a similar asbestos exposure history were analyzed by PCR/RFLP. Results The basal comet scores (3.95±2.95) were significantly higher in asbestos-exposed workers than in control workers (0.10±0.28). After 1 h H2O2 stimulation, DNA damage of lymphocytes exhibited different increases. After a 4 h repair period, the comet scores were 50.98±19.53 in asbestos-exposed workers and 18.32±12.04 in controls. The residual DNA damage (RD) was significantly greater (P〈0.01) in asbestos-exposed workers (35.62%) than in controls (27.75%). XRCC1 genetic polymorphism in 104 asbestos-exposed workers was not associated with increased risk of asbestosis. But compared with polymorphisms in the DNA repair gene XRCC1 (polymorphisms in codon 399) and the DNA damage induced by asbestos, the comet scores in asbestosis cases with Gin/Gin, Gln/Arg, and Arg/Arg were 40.26±18.94, 38.03±28.22, and 32.01±11.65, respectively, which were higher than those in non-asbestosis workers with the same genotypes (25.58±11.08, 37.08±14.74, and 29.38±10.15). There were significant differences in the comet scores between asbestosis cases and non-asbestosis workers with Gin/Gin by Student's t-test (P〈0.05 or 0.01). The comet scores were higher in asbestosis workers with Gin/Gin than in those with Arg/Arg and in non-asbestosis workers exposed to asbestos, but without statistically significant difference. Conclusions Exposure to asbestos may be related to DNA damage or the capacity of cells to repair H2O2-induced DNA damage. DNA repair gene XRCC 1 codon 399 may be responsible for the inter-individual susceptibility in DNA damage and repair capacities.展开更多
Peanut is a major oilseed and food legume.Shelling percentage(SP),closely associated with seed yield,is a trait whose improvement is a major goal of peanut breeding.In this study,a mapping population(Xuhua 13×Zho...Peanut is a major oilseed and food legume.Shelling percentage(SP),closely associated with seed yield,is a trait whose improvement is a major goal of peanut breeding.In this study,a mapping population(Xuhua 13×Zhonghua 6)was used to map quantitative trait loci(QTL)controlling SP in four environments.Two stable major QTL for SP were mapped on both SSR-and SNP-based genetic maps.q SPA07.1 on chromosome A07 explained up to 31.7%of phenotypic variation,and q SPA08.2 on chromosome A08 explained up to 10.8%.Favorable alleles of q SPA07.1 and q SPA08.2 were derived from the female and male parents,respectively.Eight recombinant inbred lines(RILs)carrying both favorable alleles showed superiority in SP over the two parents in all environmental trials.A combination of the two favorable alleles using the linked markers was verified to increase SP by~5%in the RIL population and by~3%SP in diverse peanut cultivars.q SPA07.1 and q SPA08.2 were delimited to respectively a 0.73-Mb interval harboring 96 genes and a 3.93-Mb interval harboring 238 genes.Respectively five and eight genes with high expression in pods,including enzymes and transcription factors,were assigned as candidate genes for q SPA07.1 and q SPA08.2.These consistent major QTL provide an opportunity for fine mapping of genes controlling SP,and the linked markers may be useful for genetic improvement of SP in peanut.展开更多
The inheritance of pod-and seed-number traits(PSNT) in peanut(Arachis hypogaea L.) is poorly understood. In the present study, a recombinant inbred line(RIL) population of 188 lines was used to map quantitative trait ...The inheritance of pod-and seed-number traits(PSNT) in peanut(Arachis hypogaea L.) is poorly understood. In the present study, a recombinant inbred line(RIL) population of 188 lines was used to map quantitative trait loci(QTL) for number of seeds per pod(NSP),number of pods per plant(NPP), and numbers of one-, two-, and three-seeded pods per plant(N1 PP, N2 PP, and N3 PP) in four environments. A total of 28 consensus QTL and 14 single QTL were identified, including 11 major and stable QTL. Four major and stable QTL including qN3 PPA5.2, q N3 PPA5.4, qN3 PPA5.5, and qN3 PPA5.7 each explained 12.3%–33.0% of phenotype variation. By use of another integrated linkage map for the A5 group(hereafter referred to as INT A5 group), QTL for PSNT were located in seven intervals of 0.73–9.68 Mb in length on chromosome A05, and candidate genes underlying N3 PP were suggested. These findings shed light on the genetic basis of PSNT. Major QTL for N3 PP could be used as candidates for further positional cloning.展开更多
Radial velocity is one of the key measurements in understanding the fundamental properties of stars, stellar clusters and the Galaxy. A plate of stars in the Kepler field was observed in May of 2018 with the medium-re...Radial velocity is one of the key measurements in understanding the fundamental properties of stars, stellar clusters and the Galaxy. A plate of stars in the Kepler field was observed in May of 2018 with the medium-resolution spectrographs of LAMOST, aiming to test the performance of this new system which is the upgraded equipment of LAMOST after the first five-year regular survey. We present our analysis on the radial velocity measurements(RVs) derived from these data. The results show that slight and significant systematic errors exist among the RVs obtained from the spectra collected by different spectrographs and exposures, respectively. After correcting the systematic errors with different techniques, the precision of RVs reaches ~1.3,~1.0,~0.5 and ~0.3 km s^(-1) at S/Nr = 10, 20, 50 and 100, respectively. Comparing with the RVs of standard stars from the APOGEE survey, our RVs are calibrated with a zero-point shift of~7 km s^(-1). The results indicate that the LAMOST medium-resolution spectroscopic system may provide RVs with a reasonable accuracy and precision for the selected targets.展开更多
基金supported by the Innovative Research Group Project of the National Natural Science Foundation of China(T2121004)Key Programme(52235007)National Outstanding Youth Foundation of China(52325504).
文摘Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.
文摘Background: The mechanisms by which acupuncture affects poststroke cognitive impairment (PSCI) remain unclear. Objective: To investigate brain functional network (BFN) changes in patients with PSCI after acupuncture therapy. Methods: Twenty-two PSCI patients who underwent acupuncture therapy in our hospital were enrolled as research subjects. Another 14 people matched for age, sex, and education level were included in the normal control (HC) group. All the subjects underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans;the PSCI patients underwent one scan before acupuncture therapy and another after. The network metric difference between PSCI patients and HCs was analyzed via the independent-sample t test, whereas the paired-sample t test was employed to analyze the network metric changes in PSCI patients before vs. after treatment. Results: Small-world network attributes were observed in both groups for sparsities between 0.1 and 0.28. Compared with the HC group, the PSCI group presented significantly lower values for the global topological properties (γ, Cp, and Eloc) of the brain;significantly greater values for the nodal attributes of betweenness centrality in the CUN. L and the HES. R, degree centrality in the SFGdor. L, PCG. L, IPL. L, and HES. R, and nodal local efficiency in the ORBsup. R, ORBsupmed. R, DCG. L, SMG. R, and TPOsup. L;and decreased degree centrality in the MFG. R, IFGoperc. R, and SOG. R. After treatment, PSCI patients presented increased degree centrality in the LING.L, LING.R, and IOG. L and nodal local efficiency in PHG. L, IOG. R, FFG. L, and the HES. L, and decreased betweenness centrality in the PCG. L and CUN. L, degree centrality in the ORBsupmed. R, and nodal local efficiency in ANG. R. Conclusion: Cognitive decline in PSCI patients may be related to BFN disorders;acupuncture therapy may modulate the topological properties of the BFNs of PSCI patients.
基金This work was sponsored by the National Natural Science Foundation of China(No.52235007,52325504)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No.T2121004).
文摘Implantable hydrogel-based bioelectronics(IHB)can precisely monitor human health and diagnose diseases.However,achieving biodegradability,biocompatibility,and high conformality with soft tissues poses significant challenges for IHB.Gelatin is the most suitable candidate for IHB since it is a collagen hydrolysate and a substantial part of the extracellular matrix found naturally in most tissues.This study used 3D printing ultrafine fiber networks with metamaterial design to embed into ultra-low elastic modulus hydrogel to create a novel gelatin-based conductive film(GCF)with mechanical programmability.The regulation of GCF nearly covers soft tissue mechanics,an elastic modulus from 20 to 420 kPa,and a Poisson’s ratio from-0.25 to 0.52.The negative Poisson’s ratio promotes conformality with soft tissues to improve the efficiency of biological interfaces.The GCF can monitor heartbeat signals and respiratory rate by determining cardiac deformation due to its high conformability.Notably,the gelatin characteristics of the biodegradable GCF enable the sensor to monitor and support tissue restoration.The GCF metamaterial design offers a unique idea for bioelectronics to develop implantable sensors that integrate monitoring and tissue repair and a customized method for endowing implanted sensors to be highly conformal with soft tissues.
基金funded by the NSFC(32371669)the Science and Technology Talent Project for Distinguished Young Scholars of Jilin Province(20240602009RC)+1 种基金the NSF of Jilin Province(20240101207JC)the Scientific Research Project of the Department of Education,Jilin Province(JJKH20230687KJ).
文摘Understanding how summer warming influences the parent and daughter shoot production in a perennial clonal grass is vital for comprehending the response of grassland productivity to global warming.Here,we conducted a simulated experiment using potted Leymus chinensis,to study the relationship between the photosynthetic activ-ity of parent shoots and the production of daughter shoots under a whole(90 days)summer warming scenario(+3°C).The results showed that the biomass of parents and buds decreased by 25.52%and 33.45%,respectively,under warming conditions.The reduction in parent shoot biomass due to warming directly resulted from decreased leaf area(18.03%),chlorophyll a(18.27%),chlorophyll b(29.21%)content,as well as a reduction in net photosynthetic rate(7.32%)and the maximum quantum efficiency of photosystem II(PSII)photochemistry(4.29%).The decline in daughter shoot biomass was linked to a decrease in daughter shoot number(33.33%)by warming.However,the number of belowground buds increased by 46.43%.The results indicated that long-term summer warming reduces biomass accumulation in parent shoot by increasing both limitation of stoma and non-stoma.Consequently,the parent shoot allocates relatively more biomass to the belowground organs to maintain the survival and growth of buds.Overall,buds,as a potential aboveground population,could remedy for the cur-rent loss of parent shoot density by increasing the number of future daughter shoots if summer warming subsides.
基金supported by the National Key R&D Program of China(2016YFB070700702)the National Natural Science Foundation of China(51761145048)+1 种基金the Fundamental Research Funds for the Central Universities(HUST:2019421JYCXJJ004)the China Postdoctoral Science Foundation Grant(2019M662624).
文摘Light-emitting diodes based on lead halide perovskite have attracted great attention due to their outstanding performance.However,their application is plagued by the toxicity of Pb and the poor stability.Herein novel copper-based all inorganic perovskite CsCu2I3 with much enhanced stability has been reported with a potential photoluminescence quantum yield(PLQY)over 20%and self-trapped excitons(STE).By taking advantage of its extraordinary thermal stability,we successfully fabricate high-quality CsCu2I3 film through direct vacuum-based deposition(VBD)of CsCu2I3 powder.The resulting film shows almost the same PLQY with the synthesized powder,as well as excellent uniformity and stability.The perovskite light-emitting diodes(Pe-LED)based on the evaporated CsCu2I3 emitting layer achieve a luminescence of 10 cd/m2 and an external quantum efficiency(EQE)of 0.02%.To the best of our knowledge,this is the first CsCu2I3 Pe-LED fabricated by VBD with STE property,which offers a new avenue for lead-free Pe-LED.
基金the National Key Research and Development Program of China(2017YFC0908803&2018YFC1312501&2016YFC0900901&2016YFC1301002&2020YFC2004803).
文摘Background It is unclear whether catheter ablation(CA)for atrial fibrillation(AF)affects the long-term prognosis in the elderly.This study aims to evaluate the relationship between CA and long-term outcomes in elderly patients with AF.Methods Patients more than 75 years old with non-valvular AF were prospectively enrolled between August 2011 and December 2017 in the Chinese Atrial Fibrillation Registry Study.Participants who underwent CA at baseline were propensity score matched(1:1)with those who did not receive CA.The outcome events included all-cause mortality,cardiovascular mortality,stroke/transient ischemic attack(TIA),and cardiovascular hospitalization.Results Overall,this cohort included 571 ablated patients and 571 non-ablated patients with similar characteristics on 18 dimensions.During a mean follow-up of 39.75±19.98 months(minimum six months),24 patients died in the ablation group,compared with 60 deaths in the non-ablation group[hazard ratio(HR)=0.49,95%confidence interval(CI):0.30-0.79,P=0.0024].Besides,6 ablated and 29 non-ablated subjects died of cardiovascular disease(HR=0.25,95%CI:0.11-0.61,P=0.0022).A total of 27 ablated and 40 non-ablated patients suffered stroke/TIA(HR=0.79,95%CI:0.48-1.28,P=0.3431).In addition,140 ablated and 194 non-ablated participants suffered cardiovascular hospitalization(HR=0.84,95%CI:0.67-1.04,P=0.1084).Subgroup analyses according to gender,type of AF,time since onset of AF,and anticoagulants exposure in initiation did not show significant heterogeneity.Conclusions In elderly patients with AF,CA may be associated with a lower incidence of all-cause and cardiovascular mortality.
基金supported by Science and Technology Project of State Grid Hebei Electric Power Company(SGHE0000DKJS2000228)
文摘To promote the utilization of renewable energy,such as photovoltaics,this paper proposes an optimal flexibility dispatch method for demand-side resources(DSR)based on the Stackelberg game theory.First,the concept of the generalized DSR is analyzed and flexibility models for various DSR are constructed.Second,owing to the characteristics of small capacity but large-scale,an outer approximation is proposed to describe the aggregate flexibility of DSR.Then,the optimal flexibility dispatch model of DSR based on the Stackelberg game is established and a decentralized solution algorithm is designed to obtain the Stackelberg equilibrium.Finally,the actual data are utilized for the case study and the results show that,compared to the traditional centralized optimization method,the proposed optimal flexibility dispatch method can not only reduce the net load variability of the DSR aggregator but is beneficial for all DSR owners,which is more suitable for practical applications.
基金supported in part by the National Key R&D Program of China(2017YFB0502904)the National Science Foundation of China(61876140)。
文摘Recently,video object segmentation has received great attention in the computer vision community.Most of the existing methods heavily rely on the pixel-wise human annotations,which are expensive and time-consuming to obtain.To tackle this problem,we make an early attempt to achieve video object segmentation with scribble-level supervision,which can alleviate large amounts of human labor for collecting the manual annotation.However,using conventional network architectures and learning objective functions under this scenario cannot work well as the supervision information is highly sparse and incomplete.To address this issue,this paper introduces two novel elements to learn the video object segmentation model.The first one is the scribble attention module,which captures more accurate context information and learns an effective attention map to enhance the contrast between foreground and background.The other one is the scribble-supervised loss,which can optimize the unlabeled pixels and dynamically correct inaccurate segmented areas during the training stage.To evaluate the proposed method,we implement experiments on two video object segmentation benchmark datasets,You Tube-video object segmentation(VOS),and densely annotated video segmentation(DAVIS)-2017.We first generate the scribble annotations from the original per-pixel annotations.Then,we train our model and compare its test performance with the baseline models and other existing works.Extensive experiments demonstrate that the proposed method can work effectively and approach to the methods requiring the dense per-pixel annotations.
基金The National Program for Crop Germplasm Protection of China(19210163)National Natural Science Foundation of China(32172006)+2 种基金The Plant Germplasm Resources Sharing Platform(NICGR2021-016)National Peanut Industry Technology System Construction(CARS-13)Central Scientific Institution Basal Research Fund(CAAS-OCRI-ZDRW-202101)。
文摘Peanut(Arachis hypogaea L.)is an important oil and cash crop in the world.Peanut germplasm collected in China are abundant,which provides important material guarantee for peanut breeding and industrial development.Here,the safe conservation technology and indicators of peanut germplasm resources in the Oil Crops Middleterm Genebank of China were expounded from three processes of storage,monitoring,reproduction and renewal.We summarized and reviewed the situation of conservation and utilization of peanut germplasm resources in the Middle-term Genebank in the past 20 years.The future research direction of peanut resources in the Oil Crops Middle-term Genebank of China is prospected.
基金supported by the National Transgenic Plant Research of China(2016ZX0800-00-004)。
文摘microRNA 160(miR160),targeting auxin response factors(ARFs),plays many roles in plant development.We investigated the role of the mi R160/ARF axis in regulation of cotton seed size.Suppressing mi R160 activity,specifically in the seed coat,led to smaller seeds and less fiber production owing to attenuated growth of the maternal integument.Scanning electron microscopy and histology showed that expansion of cells in the integument was retarded in mi R160-suppressed lines.Four Gh ARF genes were targeted by mi R160 and were upregulated in mi R160-suppressed lines,indicating that a mi R160/ARF axis is present in cotton.Five genes(Ghir_A05 G003740,Scaffold1878 G000010,Ghir_D09 G024980,Ghir_A11 G010730,and Ghir_A05 G041590),associated with reduced seed development were downregulated in mi R160-suppressed lines.Our results suggest that the mi R160/ARF axis controls maternal integument growth to influence seed size by directly or indirectly regulating seed development-associated genes.
基金This study was supported by a grant from National Natural Science Foundation of China (No. 30100147).
文摘Objective To compare the asbestos-induced DNA damage and repair capacities of DNA damage between 104 asbestosexposed workers and 101 control workers in Qingdao City of China and to investigate the possible association between polymorphisms in codon 399 of XRCC1 and susceptibility to asbestosis. Methods DNA damage levels in peripheral blood lymphocytes were determined by comet assay, and XRCC1 genetic polymorphisms of DNA samples from 51 asbestosis cases and 53 non-asbestosis workers with a similar asbestos exposure history were analyzed by PCR/RFLP. Results The basal comet scores (3.95±2.95) were significantly higher in asbestos-exposed workers than in control workers (0.10±0.28). After 1 h H2O2 stimulation, DNA damage of lymphocytes exhibited different increases. After a 4 h repair period, the comet scores were 50.98±19.53 in asbestos-exposed workers and 18.32±12.04 in controls. The residual DNA damage (RD) was significantly greater (P〈0.01) in asbestos-exposed workers (35.62%) than in controls (27.75%). XRCC1 genetic polymorphism in 104 asbestos-exposed workers was not associated with increased risk of asbestosis. But compared with polymorphisms in the DNA repair gene XRCC1 (polymorphisms in codon 399) and the DNA damage induced by asbestos, the comet scores in asbestosis cases with Gin/Gin, Gln/Arg, and Arg/Arg were 40.26±18.94, 38.03±28.22, and 32.01±11.65, respectively, which were higher than those in non-asbestosis workers with the same genotypes (25.58±11.08, 37.08±14.74, and 29.38±10.15). There were significant differences in the comet scores between asbestosis cases and non-asbestosis workers with Gin/Gin by Student's t-test (P〈0.05 or 0.01). The comet scores were higher in asbestosis workers with Gin/Gin than in those with Arg/Arg and in non-asbestosis workers exposed to asbestos, but without statistically significant difference. Conclusions Exposure to asbestos may be related to DNA damage or the capacity of cells to repair H2O2-induced DNA damage. DNA repair gene XRCC 1 codon 399 may be responsible for the inter-individual susceptibility in DNA damage and repair capacities.
基金the National Natural Science Foundation of China(31870319,31871666,and 31801403)China Agriculture Research System(CARS-13)+2 种基金National Program for Crop Germplasm Protection of China(2020NWB033)National Crop Germplasm Resources Center(NCGRC-2020-036)Central Public-interest Scientific Institution Basal Research Fund(Y2021CG05)。
文摘Peanut is a major oilseed and food legume.Shelling percentage(SP),closely associated with seed yield,is a trait whose improvement is a major goal of peanut breeding.In this study,a mapping population(Xuhua 13×Zhonghua 6)was used to map quantitative trait loci(QTL)controlling SP in four environments.Two stable major QTL for SP were mapped on both SSR-and SNP-based genetic maps.q SPA07.1 on chromosome A07 explained up to 31.7%of phenotypic variation,and q SPA08.2 on chromosome A08 explained up to 10.8%.Favorable alleles of q SPA07.1 and q SPA08.2 were derived from the female and male parents,respectively.Eight recombinant inbred lines(RILs)carrying both favorable alleles showed superiority in SP over the two parents in all environmental trials.A combination of the two favorable alleles using the linked markers was verified to increase SP by~5%in the RIL population and by~3%SP in diverse peanut cultivars.q SPA07.1 and q SPA08.2 were delimited to respectively a 0.73-Mb interval harboring 96 genes and a 3.93-Mb interval harboring 238 genes.Respectively five and eight genes with high expression in pods,including enzymes and transcription factors,were assigned as candidate genes for q SPA07.1 and q SPA08.2.These consistent major QTL provide an opportunity for fine mapping of genes controlling SP,and the linked markers may be useful for genetic improvement of SP in peanut.
基金supported by the National Natural Science Foundation of China(31271764,31371662,31471534,31601340,31461143022)the China's Agricultural Research System(CARS-14)+1 种基金the National Key Technology R&D Program of China(2013BAD01B03)the National Infrastructure for Crop Germplasm Resources(NICGR2017-036)
文摘The inheritance of pod-and seed-number traits(PSNT) in peanut(Arachis hypogaea L.) is poorly understood. In the present study, a recombinant inbred line(RIL) population of 188 lines was used to map quantitative trait loci(QTL) for number of seeds per pod(NSP),number of pods per plant(NPP), and numbers of one-, two-, and three-seeded pods per plant(N1 PP, N2 PP, and N3 PP) in four environments. A total of 28 consensus QTL and 14 single QTL were identified, including 11 major and stable QTL. Four major and stable QTL including qN3 PPA5.2, q N3 PPA5.4, qN3 PPA5.5, and qN3 PPA5.7 each explained 12.3%–33.0% of phenotype variation. By use of another integrated linkage map for the A5 group(hereafter referred to as INT A5 group), QTL for PSNT were located in seven intervals of 0.73–9.68 Mb in length on chromosome A05, and candidate genes underlying N3 PP were suggested. These findings shed light on the genetic basis of PSNT. Major QTL for N3 PP could be used as candidates for further positional cloning.
基金The Guoshoujing Telescope (the Large Sky Area Multi-Object Fiber Spectroscopic Telescope, LAMOST) is a National Major Scientific Project built by the Chinese Academy of Sciences (CAS)Funding for the project has been provided by the National Development and Reform Commission+3 种基金the support from the National Natural Science Foundation of China (Grant Nos. 11673003 and 11833002)the support from the China Postdoctoral Science Foundation (2018M641244)supported by the Special Funding for Advanced Users, budgeted and administrated by the Center for Astronomical Mega-Science, CASsupported by Key Research Program of Frontier Sciences, CAS (QYZDY-SSW-SLH007)
文摘Radial velocity is one of the key measurements in understanding the fundamental properties of stars, stellar clusters and the Galaxy. A plate of stars in the Kepler field was observed in May of 2018 with the medium-resolution spectrographs of LAMOST, aiming to test the performance of this new system which is the upgraded equipment of LAMOST after the first five-year regular survey. We present our analysis on the radial velocity measurements(RVs) derived from these data. The results show that slight and significant systematic errors exist among the RVs obtained from the spectra collected by different spectrographs and exposures, respectively. After correcting the systematic errors with different techniques, the precision of RVs reaches ~1.3,~1.0,~0.5 and ~0.3 km s^(-1) at S/Nr = 10, 20, 50 and 100, respectively. Comparing with the RVs of standard stars from the APOGEE survey, our RVs are calibrated with a zero-point shift of~7 km s^(-1). The results indicate that the LAMOST medium-resolution spectroscopic system may provide RVs with a reasonable accuracy and precision for the selected targets.