Ammonia (NH3) emission and redeposition play a major role in terrestrial nitrogen (N) cycles and can also cause environmental problems, such as changes in biodiversity, soil acidity, and eutrophication. Previous f...Ammonia (NH3) emission and redeposition play a major role in terrestrial nitrogen (N) cycles and can also cause environmental problems, such as changes in biodiversity, soil acidity, and eutrophication. Previous field grazing experiments showed inconsistent (positive, neutral, and negative) NH3 volatilization from soils in response to varying grazing intensities. However, it remains unclear whether, or to what extent, NH3 emissions from soil are affected by increasing grazing intensities in Inner Mongolian grasslands. Using a 5-year grazing experiment, we investigated the relationship between NH3 volatilization from soil and grazing pressure (0.0, 3.0, 6.0, and 9.0 sheep/hm2) from June to September of 2009 and 2010 via the vented-chamber method. The results show that soil NH3 volatilization was not significantly different at different grazing intensities in 2009, although it was higher at the highest stocking rate during 2010. There was no significant linear relationship between soil NH3 volatilization rates and soil NH4^-N, but soil NH3 volatilization rates were significantly related to soil water content and air temperature. Grazing intensities had no significant influence on soil NH3 volatilization. Soil NH3 emissions from June to Sep- tember (grazing period), averaged over all grazing intensities, were 9.6±0.2 and 19.0±0.2 kg N/hm2 in 2009 and 2010, respectively. Moreover, linear equations describing monthly air temperature and precipitation showed a good fit to changes in soil NH3 emissions (r=0.506, P=0.014). Overall, grazing intensities had less influence than that of climatic factors on soil NH3 emissions. Our findings provide new insights into the effects of grazing on NH3 volatili- zation from soil in Inner Mongolian grasslands, and have important implications for understanding N cycles in grassland ecosystems and for estimating soil NH3 emissions on a regional scale.展开更多
Parameterization is a critical step in modelling ecosystem dynamics.However,assigning parameter values can be a technical challenge for structurally complex natural plant communities;uncertainties in model simulations...Parameterization is a critical step in modelling ecosystem dynamics.However,assigning parameter values can be a technical challenge for structurally complex natural plant communities;uncertainties in model simulations often arise from inappropriate model parameterization.Here we compared five methods for defining community-level specific leaf area(SLA)and leaf C:N across nine contrasting forest sites along the North-South Transect of Eastern China,including biomass-weighted average for the entire plant community(AP_BW)and four simplified selective sampling(biomass-weighted average over five dominant tree species[5DT_BW],basal area weighted average over five dominant tree species[5DT_AW],biomass-weighted average over all tree species[AT_BW]and basal area weighted average over all tree species[AT_AW]).We found that the default values for SLA and leaf C:N embedded in the Biome-BGC v4.2 were higher than the five computational methods produced across the nine sites,with deviations ranging from 28.0 to 73.3%.In addition,there were only slight deviations(<10%)between the whole plant community sampling(AP_BW)predicted NPP and the four simplified selective sampling methods,and no significant difference between the predictions of AT_BW and AP_BW except the Shennongjia site.The findings in this study highlights the critical importance of computational strategies for community-level parameterization in ecosystem process modelling,and will support the choice of parameterization methods.展开更多
Stomata control carbon and water vapor exchange between the leaves and the atmosphere,thus infl uencing photosynthesis and transpiration.Combinations of forest patches with different stand ages are common in nature,ho...Stomata control carbon and water vapor exchange between the leaves and the atmosphere,thus infl uencing photosynthesis and transpiration.Combinations of forest patches with different stand ages are common in nature,however,information of which stomatal traits vary among these stands and how,remains limited.Here,seven different aged forest stands(6,14,25,36,45,55,and 100 years)were selected in typical temperate,mixed broadleaf-conifer forests of northeast China.Stomatal density,size and relative area of 624 species,including the same species in stands of different ages were selected.Stomatal density,size and relative area were distributed log-normally,differing across all species and plant functional groups.Stomatal density ranged from 4.2 to 1276.7 stomata mm^(–2),stomatal size ranged from 66.6 to 8315.7μm^(2),and stomatal relative area 0.1–93.3%.There was a significant negative relationship between density and size at the species and functional group levels,while the relative stomatal area was positively correlated with density and size.Stomatal traits of dominant species were relatively stable across different stand ages but were significantly different for herbs.The results suggest that stomatal traits remain relatively stable for dominant species in natural forests and therefore,spatial variation in stomatal traits across forest patches does not need to be incorporated in future ecological models.展开更多
Evidence-based selective cutting at prescribed intervals as part of good forest management can enhance the carbon sequestration capacity of the forest.The effect of forest management on carbon sequestration has,howeve...Evidence-based selective cutting at prescribed intervals as part of good forest management can enhance the carbon sequestration capacity of the forest.The effect of forest management on carbon sequestration has,however,not been quantified.Thus,carbon content of various organs was measured for 323 tree species,247 shrub species,and233 herb species in seven temperate coniferous and broadleaved mixed forests that were subjected to selective cutting with restoration durations of 100,55,45,36,25,14,and6 years to explore dynamic changes in carbon storage.The results showed that biomass carbon allocation in different organs followed a pattern:trunk>root>branch>leaf for all forests.With longer restoration durations,more carbon accumulated in different organs and in soils.Interestingly,when the restoration duration exceeded 50 years,carbon storage in ecosystem was larger than that in primary forests with 100-year cutting intervals,suggesting that a reasonable selective cutting interval can increase forest carbon sequestration.Mean diameter at breast height(DBH)and forest carbon storage were significantly positively correlated,and carbon storage of selectively cut forests exceeded that of primary forests when the stand mean DBH exceeded 15.66 cm.Therefore,mean DBH of forests can be an indicator for combining sustainable forest management and forest carbon sequestration.Additionally,the classic coefficients of 0.45 and 0.50 used to estimate carbon sequestration underestimated values by 2.65%and overestimated by 8.16%,respectively,in comparison with the measured carbon content from different plant organs.展开更多
A stable soil pH is essential for maintaining the structure and functions of ecosystems[1].In previous decades,the development model of high energy consumption has rapidly increased the emission of acid precursors.Thi...A stable soil pH is essential for maintaining the structure and functions of ecosystems[1].In previous decades,the development model of high energy consumption has rapidly increased the emission of acid precursors.This has not only resulted in the direct input of acidity into the soil but also in the production of acidity through elements cycling,both of which produce protons(Fig.S1 online)[2].Recent studies have shown that atmospheric acid deposition has decreased by more than half compared with that during the 1990s.The decrease in acid deposition in Europe and North-America has resulted in recovery of soil acidification[3].展开更多
Forests are chiefly responsible for the terrestrial carbon sink that greatly re duces the buildup of CO_(2)concentrations in the atmosphere and alleviates climate change.Current predictions of terrestrial carbon sinks...Forests are chiefly responsible for the terrestrial carbon sink that greatly re duces the buildup of CO_(2)concentrations in the atmosphere and alleviates climate change.Current predictions of terrestrial carbon sinks in the future have so far ignored the variation of forest carbon uptake with forest age.Here,we predict the role of China's current forest age in future carbon sink capacity by generating a high-resolution(30 m)forest age map in 2019 over China's landmass using satellite and forest inventory data and deriving forest growth curves using measurements of forest biomass and age in 3,121 plots.As China's forests currently have large proportions of young and middle-age stands,we project that China's forests will maintain high growth rates for about 15 years.However,as the forests grow older,their net primary productivity will decline by 5.0%±1.4%in 2050,8.4%±1.6%in 2060,and 16.6%±2.8%in 2100,indicating weakened carbon sinks in the near future.The weakening of forest carbon sinks can be potentially mitigated by optimizing forest age structure through selective logging and implementing new or improved afforestation.This finding is important not only for the global carbon cycle and climate projections but also for developing forest management strategies to enhance land sinks by alleviating the age effect.展开更多
Aims Nitrogen(N)enrichment caused by human activities threatens bio-diversity and alters plant community composition and structure.It has been found that heavy and infrequent N inputs may over-estimate species extinct...Aims Nitrogen(N)enrichment caused by human activities threatens bio-diversity and alters plant community composition and structure.It has been found that heavy and infrequent N inputs may over-estimate species extinction,but it remains unclear whether plant community structure will equally respond to frequent reactive N enriched conditions.Methods We independently manipulated the rates and the frequencies of N addition in a temperate steppe,northern China,between 2008 and 2013.Important Findings We found that plant community structure changes,measured by‘Euclidean distance’involving species richness,composition and productivity,were significantly positively related to increasing N enrichment rates rather than frequencies.Changes in aboveground net primary productivity(ANPP),plant species richness and shifts in dominant species were observed.Community ANPP increased with N enrichment,whereas species richness reduced.The frequency of N enrichment increased species richness but had no impacts on community ANPP and the relative ANPP of the two dominant spe-cies,C3 perennial bunchgrass Stipa grandis and C3 perennial rhi-zome grass Leymus chinensis.The ANPP and relative ANPP of the two dominant species were significantly negatively correlated with each other.Moreover,changes in the relative ANPP of S.grandis was negatively associated with the changes in community structure.After 5 years’treatment,direct influence of the frequency of N en-richment on plant community structure was not observed,but the effects of the rate of N enrichment were apparent.Our results sug-gested that further study in various ecosystems and with long-term and well-controlled comparisons the frequency vs.the rate of N enrichment may still be needed.展开更多
Forestation is important for sequestering atmospheric carbon,and it is a cost-effective and nature-based solution(NBS)for mitigating global climate change.Here,under the assumption of forestation in the potential plan...Forestation is important for sequestering atmospheric carbon,and it is a cost-effective and nature-based solution(NBS)for mitigating global climate change.Here,under the assumption of forestation in the potential plantable lands,we used the forest carbon sequestration(FCS)model and field survey involving 3365 forest plots to assess the carbon sequestration rate(CSR)of Chinese existing and new forestation forests from 2010 to 2060 under three forestation and three climate scenarios.Without considering the influence of extreme events and human disturbance,the estimated average CSR in Chinese forests was 0.358±0.016 Pg C a^(-1),with partitioning to biomass(0.211±0.016 Pg C a^(-1))and soil(0.147±0.005 Pg C a^(-1)),respectively.The existing forests account for approximately 93.5%of the CSR,which will peak near 2035,and decreasing trend was present overall after 2035.After 2035,effective tending management is required to maintain the high CSR level,such as selective cutting,thinning,and approximate disturbance.However,new forestation from 2015 in the potential plantable lands would play a minimal role in additional CSR increases.In China,the CSR is generally higher in the Northeast,Southwest,and Central-South,and lower in the Northwest.Considering the potential losses through deforestation and logging,it is realistically estimated that CSR in Chinese forests would remain in the range of 0.161–0.358 Pg C a^(-1) from 2010 to 2060.Overall,forests have the potential to offset 14.1%of the national anthropogenic carbon emissions in China over the period of 2010–2060,significantly contributing to the carbon neutrality target of 2060 with the implementation of effective management strategies for existing forests and expansion of forestation.展开更多
Sulfur is an essential functional element in leaves,and it plays important roles in regulating plant growth,development and abiotic stress resistance in natural communities.However,there has been limited information o...Sulfur is an essential functional element in leaves,and it plays important roles in regulating plant growth,development and abiotic stress resistance in natural communities.However,there has been limited information on the spatial variation in leaf sulfur content(LSC)and adaptive characters on a large community scale.Sulfur in leaves of 2207 plant species from 80 widespread ecosystems(31 forests,38 grasslands and 11 deserts)in China was measured.One-way analysis of variance with Duncan’s multiple-range tests were used to evaluate the differences in LSC among different plant growth forms and ecosystems.We fitted the relationships of LSC to spatial and climate factors using regression.Structural equation modeling analysis and phylogenetic analysis helped us further explore the main factors of LSC variation.LSC ranged from 0.15 to 48.64 g·kg^(-1),with an average of 2.13±0.04 g·kg^(-1) at the community scale in China.We observed significant spatial variation in LSC among different ecosystems and taxa.Overall,LSC was higher in arid areas and herbs.Furthermore,higher LSC was observed under environments of drought,low temperatures and intense ultraviolet radiation.Temperature,precipitation,radiation,soil sulfur content and aridity jointly regulated LSC,explaining 79%of the spatial variation.However,LSC was not significantly related to phylogeny.Our results demonstrate that LSC plays an important role in plant adaptations to extreme environments and further extend our understanding of the biological function of sulfur from the organ to the community level.These findings highlight the importance of sulfur metabolism for our understanding of the impact of global climate change on plants.展开更多
Aims Pulse effects of precipitation cause soil organic matter to rapidly decompose and release CO2 in a short period.The pulse effects of precipitation are important for ecosystem C cycling and soil C balance,although...Aims Pulse effects of precipitation cause soil organic matter to rapidly decompose and release CO2 in a short period.The pulse effects of precipitation are important for ecosystem C cycling and soil C balance,although their spatial variation in forest soils and the underlying mechanisms remain unclear.Methods Soil samples(0–10 cm)from 22 typical forest ecosystems in eastern China were used,to investigate the effects of simulated pulse precipitation on soil microbial respiration rates(Rs).We simulated pulsed precipitation to reach 65%water-holding capacity,the Rs was measured on a minute scale for 48 h.Important Findings Precipitation pulses can cause a rapid 1.70–38.12-fold increase in the rate of mineralized decomposing organic matter.Maximum Rs(_(Rs-soil-max)),cumulative Rs(A_(Rs-soil))and the time taken to arrive at the maximal Rs(T_(Rs-soil-max))were significant differences among different soil samples.Furthermore,the pulse effects in different climate zones were significantly different.R_(s-soil-max)(11.701μg C g^(-1)soil h^(-1))and A_(Rs-soil)(300.712μg C g^(-1) soil)were the highest in the mid-temperate zone.Soil chemical properties(total C and,N,pH and oxidation–reduction potential)and soil fractions were strongly correlated with the pulse effects in forest soils,but soil microbes contributed less.Our findings demonstrated that the pulse effects increase forest soil carbon emissions in the short term at a regional scale,and identified the factors with the greatest influence on this change.These findings help guide future studies on the C cycles of forest ecosystems and regulating ecosystem C cycles.展开更多
Forests are important parts of terrestrial ecosystems and play a leading role in regional and global nitrogen(N)cycles.Detailed assessment of N storage and allocation in China’s forests is critical to improve the acc...Forests are important parts of terrestrial ecosystems and play a leading role in regional and global nitrogen(N)cycles.Detailed assessment of N storage and allocation in China’s forests is critical to improve the accuracy of regional or global N estimates and to guide policy-makers in the formulation of scientific and effective N management measures.However,the fore stN storage at national scale remains unclear.Based on 4420 forest field-investigated data,we investigated the N storage allocation in China’s forests,explored the spatial patterns and influence factors.The data included vegetation information on various organs(i.e.,leaf,branch,stem,and root)and soil information at different depths(0-30 cm and 0-100 cm).The total N storage in China’s forest ecosystems was 14.45±8.42 tN hm^–2;0.86±0.51 tN hm^–2(5.95%)in vegetation and 13.59±8.40 tN hm^–2(94.05%)in soil(0–100 cm).The storage and allocation of N varied significantly across various regions and forest types.For different ecological regions,N storage varied from 10.34 to 23.11 tN hm^–2,and the allocation ratio of N storage between vegetation and soil(0–100 cm)varied from 0.03 to 0.16.For different forest types,the N storage varied from 12.87 to 18.32 tN hm^–2,and the allocation ratio of N storage between vegetation and soil(0–100 cm)varied from 0.03 to 0.09.The spatial patterns relative to N storage and allocation in forests were different.Climate was the primary factor influencing the spatial variation in forestN storage,while soil texture was the main factor influencing the spatial variation in N allocation.These first estimates of N storage and allocation ratio in China’s forests are keys for improving the fitting accuracy of regional N cycle models and provide a reference for regional management of forestN.展开更多
基金Funding for this work came from the National Natural Science Foundation of China (30830026)the National Basic Research Program of China (2009CB825103)the Innovative Research Group Project of the National Natural Science Foundation of China (30821062)
文摘Ammonia (NH3) emission and redeposition play a major role in terrestrial nitrogen (N) cycles and can also cause environmental problems, such as changes in biodiversity, soil acidity, and eutrophication. Previous field grazing experiments showed inconsistent (positive, neutral, and negative) NH3 volatilization from soils in response to varying grazing intensities. However, it remains unclear whether, or to what extent, NH3 emissions from soil are affected by increasing grazing intensities in Inner Mongolian grasslands. Using a 5-year grazing experiment, we investigated the relationship between NH3 volatilization from soil and grazing pressure (0.0, 3.0, 6.0, and 9.0 sheep/hm2) from June to September of 2009 and 2010 via the vented-chamber method. The results show that soil NH3 volatilization was not significantly different at different grazing intensities in 2009, although it was higher at the highest stocking rate during 2010. There was no significant linear relationship between soil NH3 volatilization rates and soil NH4^-N, but soil NH3 volatilization rates were significantly related to soil water content and air temperature. Grazing intensities had no significant influence on soil NH3 volatilization. Soil NH3 emissions from June to Sep- tember (grazing period), averaged over all grazing intensities, were 9.6±0.2 and 19.0±0.2 kg N/hm2 in 2009 and 2010, respectively. Moreover, linear equations describing monthly air temperature and precipitation showed a good fit to changes in soil NH3 emissions (r=0.506, P=0.014). Overall, grazing intensities had less influence than that of climatic factors on soil NH3 emissions. Our findings provide new insights into the effects of grazing on NH3 volatili- zation from soil in Inner Mongolian grasslands, and have important implications for understanding N cycles in grassland ecosystems and for estimating soil NH3 emissions on a regional scale.
基金This research was funded by the National Natural Science Foundation of China(Grant Nos.31870426).
文摘Parameterization is a critical step in modelling ecosystem dynamics.However,assigning parameter values can be a technical challenge for structurally complex natural plant communities;uncertainties in model simulations often arise from inappropriate model parameterization.Here we compared five methods for defining community-level specific leaf area(SLA)and leaf C:N across nine contrasting forest sites along the North-South Transect of Eastern China,including biomass-weighted average for the entire plant community(AP_BW)and four simplified selective sampling(biomass-weighted average over five dominant tree species[5DT_BW],basal area weighted average over five dominant tree species[5DT_AW],biomass-weighted average over all tree species[AT_BW]and basal area weighted average over all tree species[AT_AW]).We found that the default values for SLA and leaf C:N embedded in the Biome-BGC v4.2 were higher than the five computational methods produced across the nine sites,with deviations ranging from 28.0 to 73.3%.In addition,there were only slight deviations(<10%)between the whole plant community sampling(AP_BW)predicted NPP and the four simplified selective sampling methods,and no significant difference between the predictions of AT_BW and AP_BW except the Shennongjia site.The findings in this study highlights the critical importance of computational strategies for community-level parameterization in ecosystem process modelling,and will support the choice of parameterization methods.
基金supported by the National Natural Science Foundation of China(31,872,683,31,800,368,31,872,690)the National Key Research Project of China(2017YFC0504004,2016YFC0500202)the program of Youth Innovation Research Team Project(LENOM2016Q0005)。
文摘Stomata control carbon and water vapor exchange between the leaves and the atmosphere,thus infl uencing photosynthesis and transpiration.Combinations of forest patches with different stand ages are common in nature,however,information of which stomatal traits vary among these stands and how,remains limited.Here,seven different aged forest stands(6,14,25,36,45,55,and 100 years)were selected in typical temperate,mixed broadleaf-conifer forests of northeast China.Stomatal density,size and relative area of 624 species,including the same species in stands of different ages were selected.Stomatal density,size and relative area were distributed log-normally,differing across all species and plant functional groups.Stomatal density ranged from 4.2 to 1276.7 stomata mm^(–2),stomatal size ranged from 66.6 to 8315.7μm^(2),and stomatal relative area 0.1–93.3%.There was a significant negative relationship between density and size at the species and functional group levels,while the relative stomatal area was positively correlated with density and size.Stomatal traits of dominant species were relatively stable across different stand ages but were significantly different for herbs.The results suggest that stomatal traits remain relatively stable for dominant species in natural forests and therefore,spatial variation in stomatal traits across forest patches does not need to be incorporated in future ecological models.
基金supported financially by the Natural Science Foundation of China(31,800,368,31,872,683)the National Key R&D program of China(2017YFC0504004)by the program of Youth Innovation Research Team Project(LENOM2016Q0005)。
文摘Evidence-based selective cutting at prescribed intervals as part of good forest management can enhance the carbon sequestration capacity of the forest.The effect of forest management on carbon sequestration has,however,not been quantified.Thus,carbon content of various organs was measured for 323 tree species,247 shrub species,and233 herb species in seven temperate coniferous and broadleaved mixed forests that were subjected to selective cutting with restoration durations of 100,55,45,36,25,14,and6 years to explore dynamic changes in carbon storage.The results showed that biomass carbon allocation in different organs followed a pattern:trunk>root>branch>leaf for all forests.With longer restoration durations,more carbon accumulated in different organs and in soils.Interestingly,when the restoration duration exceeded 50 years,carbon storage in ecosystem was larger than that in primary forests with 100-year cutting intervals,suggesting that a reasonable selective cutting interval can increase forest carbon sequestration.Mean diameter at breast height(DBH)and forest carbon storage were significantly positively correlated,and carbon storage of selectively cut forests exceeded that of primary forests when the stand mean DBH exceeded 15.66 cm.Therefore,mean DBH of forests can be an indicator for combining sustainable forest management and forest carbon sequestration.Additionally,the classic coefficients of 0.45 and 0.50 used to estimate carbon sequestration underestimated values by 2.65%and overestimated by 8.16%,respectively,in comparison with the measured carbon content from different plant organs.
基金supported by the National Natural Science Foundation of China(31872690 and 31988102)the National Key Research&Development Program of China(2017YFA0604803)the Youth Innovation Research Project from Key Laboratory of Ecosystem Network Observation and Modeling,Chinese Academy of Sciences。
文摘A stable soil pH is essential for maintaining the structure and functions of ecosystems[1].In previous decades,the development model of high energy consumption has rapidly increased the emission of acid precursors.This has not only resulted in the direct input of acidity into the soil but also in the production of acidity through elements cycling,both of which produce protons(Fig.S1 online)[2].Recent studies have shown that atmospheric acid deposition has decreased by more than half compared with that during the 1990s.The decrease in acid deposition in Europe and North-America has resulted in recovery of soil acidification[3].
基金National Natural Science Foundationof China(grant nos.42101367 to R.S.and 42201360 to M.X.)Natural Science Foundation of Fujian Province(grant no.2021J05041 to R.S.)+1 种基金Fujan Forestry Science and Technology Key Project(grant no.2022FKJ03 to R.S)Open Fund Project of the Academy of Carbon Neutrality of Fujian Normal University(grant no.TZH2022-02 to R.S).
文摘Forests are chiefly responsible for the terrestrial carbon sink that greatly re duces the buildup of CO_(2)concentrations in the atmosphere and alleviates climate change.Current predictions of terrestrial carbon sinks in the future have so far ignored the variation of forest carbon uptake with forest age.Here,we predict the role of China's current forest age in future carbon sink capacity by generating a high-resolution(30 m)forest age map in 2019 over China's landmass using satellite and forest inventory data and deriving forest growth curves using measurements of forest biomass and age in 3,121 plots.As China's forests currently have large proportions of young and middle-age stands,we project that China's forests will maintain high growth rates for about 15 years.However,as the forests grow older,their net primary productivity will decline by 5.0%±1.4%in 2050,8.4%±1.6%in 2060,and 16.6%±2.8%in 2100,indicating weakened carbon sinks in the near future.The weakening of forest carbon sinks can be potentially mitigated by optimizing forest age structure through selective logging and implementing new or improved afforestation.This finding is important not only for the global carbon cycle and climate projections but also for developing forest management strategies to enhance land sinks by alleviating the age effect.
基金National Natural Science Foundation of China(NSFC31570469)+2 种基金China Postdoctoral Science Foundation(2015T80153)to Y.Z.,National Key R&D program of China(2016YFC0500202)N.H.,NSFC(41573063)C.W.and National Key R&D program of China(2016YFC0500700)and NSFC(31430016)to X.H.
文摘Aims Nitrogen(N)enrichment caused by human activities threatens bio-diversity and alters plant community composition and structure.It has been found that heavy and infrequent N inputs may over-estimate species extinction,but it remains unclear whether plant community structure will equally respond to frequent reactive N enriched conditions.Methods We independently manipulated the rates and the frequencies of N addition in a temperate steppe,northern China,between 2008 and 2013.Important Findings We found that plant community structure changes,measured by‘Euclidean distance’involving species richness,composition and productivity,were significantly positively related to increasing N enrichment rates rather than frequencies.Changes in aboveground net primary productivity(ANPP),plant species richness and shifts in dominant species were observed.Community ANPP increased with N enrichment,whereas species richness reduced.The frequency of N enrichment increased species richness but had no impacts on community ANPP and the relative ANPP of the two dominant spe-cies,C3 perennial bunchgrass Stipa grandis and C3 perennial rhi-zome grass Leymus chinensis.The ANPP and relative ANPP of the two dominant species were significantly negatively correlated with each other.Moreover,changes in the relative ANPP of S.grandis was negatively associated with the changes in community structure.After 5 years’treatment,direct influence of the frequency of N en-richment on plant community structure was not observed,but the effects of the rate of N enrichment were apparent.Our results sug-gested that further study in various ecosystems and with long-term and well-controlled comparisons the frequency vs.the rate of N enrichment may still be needed.
基金supported by the National Natural Science Foundation of China(31988102,32171544)the National Science and Technology Basic Resources Survey Program of China(2019FY101300)the Youth Innovation Research Project from Key Laboratory of Ecosystem Network Observation and Modeling,Chinese Academy of Sciences。
文摘Forestation is important for sequestering atmospheric carbon,and it is a cost-effective and nature-based solution(NBS)for mitigating global climate change.Here,under the assumption of forestation in the potential plantable lands,we used the forest carbon sequestration(FCS)model and field survey involving 3365 forest plots to assess the carbon sequestration rate(CSR)of Chinese existing and new forestation forests from 2010 to 2060 under three forestation and three climate scenarios.Without considering the influence of extreme events and human disturbance,the estimated average CSR in Chinese forests was 0.358±0.016 Pg C a^(-1),with partitioning to biomass(0.211±0.016 Pg C a^(-1))and soil(0.147±0.005 Pg C a^(-1)),respectively.The existing forests account for approximately 93.5%of the CSR,which will peak near 2035,and decreasing trend was present overall after 2035.After 2035,effective tending management is required to maintain the high CSR level,such as selective cutting,thinning,and approximate disturbance.However,new forestation from 2015 in the potential plantable lands would play a minimal role in additional CSR increases.In China,the CSR is generally higher in the Northeast,Southwest,and Central-South,and lower in the Northwest.Considering the potential losses through deforestation and logging,it is realistically estimated that CSR in Chinese forests would remain in the range of 0.161–0.358 Pg C a^(-1) from 2010 to 2060.Overall,forests have the potential to offset 14.1%of the national anthropogenic carbon emissions in China over the period of 2010–2060,significantly contributing to the carbon neutrality target of 2060 with the implementation of effective management strategies for existing forests and expansion of forestation.
基金supported by the Natural Science Foundation of China(31988102,31872690)National Key R&D Program of China(2017YFA0604803).
文摘Sulfur is an essential functional element in leaves,and it plays important roles in regulating plant growth,development and abiotic stress resistance in natural communities.However,there has been limited information on the spatial variation in leaf sulfur content(LSC)and adaptive characters on a large community scale.Sulfur in leaves of 2207 plant species from 80 widespread ecosystems(31 forests,38 grasslands and 11 deserts)in China was measured.One-way analysis of variance with Duncan’s multiple-range tests were used to evaluate the differences in LSC among different plant growth forms and ecosystems.We fitted the relationships of LSC to spatial and climate factors using regression.Structural equation modeling analysis and phylogenetic analysis helped us further explore the main factors of LSC variation.LSC ranged from 0.15 to 48.64 g·kg^(-1),with an average of 2.13±0.04 g·kg^(-1) at the community scale in China.We observed significant spatial variation in LSC among different ecosystems and taxa.Overall,LSC was higher in arid areas and herbs.Furthermore,higher LSC was observed under environments of drought,low temperatures and intense ultraviolet radiation.Temperature,precipitation,radiation,soil sulfur content and aridity jointly regulated LSC,explaining 79%of the spatial variation.However,LSC was not significantly related to phylogeny.Our results demonstrate that LSC plays an important role in plant adaptations to extreme environments and further extend our understanding of the biological function of sulfur from the organ to the community level.These findings highlight the importance of sulfur metabolism for our understanding of the impact of global climate change on plants.
基金This study was financially supported by the NationalNatural Science Foundation of China(31988102,31770655,31800368).
文摘Aims Pulse effects of precipitation cause soil organic matter to rapidly decompose and release CO2 in a short period.The pulse effects of precipitation are important for ecosystem C cycling and soil C balance,although their spatial variation in forest soils and the underlying mechanisms remain unclear.Methods Soil samples(0–10 cm)from 22 typical forest ecosystems in eastern China were used,to investigate the effects of simulated pulse precipitation on soil microbial respiration rates(Rs).We simulated pulsed precipitation to reach 65%water-holding capacity,the Rs was measured on a minute scale for 48 h.Important Findings Precipitation pulses can cause a rapid 1.70–38.12-fold increase in the rate of mineralized decomposing organic matter.Maximum Rs(_(Rs-soil-max)),cumulative Rs(A_(Rs-soil))and the time taken to arrive at the maximal Rs(T_(Rs-soil-max))were significant differences among different soil samples.Furthermore,the pulse effects in different climate zones were significantly different.R_(s-soil-max)(11.701μg C g^(-1)soil h^(-1))and A_(Rs-soil)(300.712μg C g^(-1) soil)were the highest in the mid-temperate zone.Soil chemical properties(total C and,N,pH and oxidation–reduction potential)and soil fractions were strongly correlated with the pulse effects in forest soils,but soil microbes contributed less.Our findings demonstrated that the pulse effects increase forest soil carbon emissions in the short term at a regional scale,and identified the factors with the greatest influence on this change.These findings help guide future studies on the C cycles of forest ecosystems and regulating ecosystem C cycles.
基金supported by the National Natural Science Foundation of China(Grant No.31800368)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA19020302)the National Key R&D Program of China(Grant No.2016YFC0500202)。
文摘Forests are important parts of terrestrial ecosystems and play a leading role in regional and global nitrogen(N)cycles.Detailed assessment of N storage and allocation in China’s forests is critical to improve the accuracy of regional or global N estimates and to guide policy-makers in the formulation of scientific and effective N management measures.However,the fore stN storage at national scale remains unclear.Based on 4420 forest field-investigated data,we investigated the N storage allocation in China’s forests,explored the spatial patterns and influence factors.The data included vegetation information on various organs(i.e.,leaf,branch,stem,and root)and soil information at different depths(0-30 cm and 0-100 cm).The total N storage in China’s forest ecosystems was 14.45±8.42 tN hm^–2;0.86±0.51 tN hm^–2(5.95%)in vegetation and 13.59±8.40 tN hm^–2(94.05%)in soil(0–100 cm).The storage and allocation of N varied significantly across various regions and forest types.For different ecological regions,N storage varied from 10.34 to 23.11 tN hm^–2,and the allocation ratio of N storage between vegetation and soil(0–100 cm)varied from 0.03 to 0.16.For different forest types,the N storage varied from 12.87 to 18.32 tN hm^–2,and the allocation ratio of N storage between vegetation and soil(0–100 cm)varied from 0.03 to 0.09.The spatial patterns relative to N storage and allocation in forests were different.Climate was the primary factor influencing the spatial variation in forestN storage,while soil texture was the main factor influencing the spatial variation in N allocation.These first estimates of N storage and allocation ratio in China’s forests are keys for improving the fitting accuracy of regional N cycle models and provide a reference for regional management of forestN.
基金supported by the National Science and Technology Basic Resources Survey Program of China(2019FY101300)the National Natural Science Foundation of China(42071303,31961143022,31988102)the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK060602)。