After cumulative discharge of gas discharge tube(GDT),it is easy to form a short circuit pathway between the two electrodes,which increases the failure risk and causes severe influences on the protected object.To redu...After cumulative discharge of gas discharge tube(GDT),it is easy to form a short circuit pathway between the two electrodes,which increases the failure risk and causes severe influences on the protected object.To reduce the failure risk of GDT and improve cumulative discharge times before failure,this work aims to suppress the formation of two short-circuit pathways by optimizing the tube wall structure,the electrode materials and the electrode structure.A total of five improved GDT samples are designed by focusing on the insulation resistance change that occurs after the improvement;then,by combining these designs with the microscopic morphology changes inside the cavity and the differences in deposition composition,the reasons for the differences in the GDT failure risk are also analyzed.The experimental results show that compared with GDT of traditional structure and material,the method of adding grooves at both ends of the tube wall can effectively block the deposition pathway of the tube wall,and the cumulative discharge time before device failure is increased by 149%.On this basis,when the iron-nickel electrode is replaced with a tungsten-copper electrode,the difference in the electrode’s surface splash characteristics further extends the discharge time before failure by 183%.In addition,when compared with the traditional electrode structure,the method of adding an annular structure at the electrode edge to block the splashing pathway for the particles on the electrode surface shows no positive effect,and the cumulative discharge time before the failure of the two structures is reduced by 22.8%and 49.7%,respectively.Among these improved structures,the samples with grooves at both ends of the tube wall and tungsten-copper as their electrode material have the lowest failure risk.展开更多
The modular multilevel matrix converter(M3C)is a potential frequency converter for low-frequency AC transmission.However,capacitor voltage control of high-voltage and largecapacity M3C is more difficult,especially for...The modular multilevel matrix converter(M3C)is a potential frequency converter for low-frequency AC transmission.However,capacitor voltage control of high-voltage and largecapacity M3C is more difficult,especially for voltage balancing between branches.To solve this problem,this paper defines sequence circulating components and theoretically analyzes the influence mechanism of different sequence circulating components on branch capacitor voltage.A fully decoupled branch energy balancing control method based on four groups of sequence circulating components is proposed.This method can control capacitor voltages of nine branches in horizontal,vertical and diagonal directions.Considering influences of both circulating current and voltage,a cross decoupled control is designed to improve control precision.Simulation results are taken from a low-frequency transmission system based on PSCAD/EMTDC,and effectiveness and precision of the proposed branch energy balancing control method are verified in the case of nonuniform parameters and an unbalanced power system.展开更多
The cluster DC voltage balancing control adopting zero-sequence voltage injection is appropriate for the starconnected cascaded H-bridge STATCOM because no zerosequence currents are generated in the three-phase three-...The cluster DC voltage balancing control adopting zero-sequence voltage injection is appropriate for the starconnected cascaded H-bridge STATCOM because no zerosequence currents are generated in the three-phase three-wire system.However,as the zero-sequence voltage is expressed in trigonometric form,traditional control methods involve many complicated operations,such as the square-root,trigonometric operations,and inverse tangent operations.To simplify cluster voltage balancing control,this paper converts the zero-sequence voltage to the dq frame in a DC representation by introducing a virtually orthogonal variable,and the DC components of the zero-sequence voltage in the dq frame are regulated linearly by proportional integral regulators,rather than being calculated from uneven active powers in traditional controls.This removes all complicated operations.Finally,this paper presents simulation and experimental results for a 400 V±7.5 kvar star-connected STATCOM,in balanced and unbalanced scenarios,thereby verifying the effectiveness of the proposed control.展开更多
The puncture of glass fibre reinforced polymer(GFRP)laminate is a primary damage pattern of wind turbine blades due to lightning strikes.A numerical simulation model of positive streamer propagation in a needle‐to‐p...The puncture of glass fibre reinforced polymer(GFRP)laminate is a primary damage pattern of wind turbine blades due to lightning strikes.A numerical simulation model of positive streamer propagation in a needle‐to‐plate air gap with a GFRP laminate is established to investigate the breakdown mechanism of GFRP laminate.The model not only considers the dynamics of charged particles in the air and the composite laminate,but also the current continuity at gas-solid interfaces.The simulated streamer discharge pattern and the surface streamer length are in good agreement with the observation results.The distributions and evolutions of the electron number density,electric field,and surface charge densities during streamer propagation are obtained.It is found that the enhancement of the electric field on the GFRP laminate is caused by the rapid deposition of positive and negative space charges on the GFRP laminate after a secondary streamer incepts on the lower surface of the GFRP laminate.The effects of the applied voltage,relative permittivity,and thickness of the GFRP laminate on the electric field on the GFRP laminate are investigated.The obtained results could assist in further under-standing of the mechanism of GFRP wind blade breakdown due to lightning strikes.展开更多
Requirements of the Internet of things for the network includes the ability to monitor the equipment and devices.Nowadays,the reliability of a power electronics converter has raised concerns of both academia and indus...Requirements of the Internet of things for the network includes the ability to monitor the equipment and devices.Nowadays,the reliability of a power electronics converter has raised concerns of both academia and industry.In particular,power semiconductor devices are continuously exposed to excessive stress while being designed with high power handling capability and are considered as the most fragile component in power converters suffering from a high failure rate.Aiming to find an effective monitoring method which is also helpful for the Internet of Things and improve the reliability of a three-level neutral-point-clamped power inverter,an in-situ health monitoring method is proposed by harnessing the inverter operational characteristics and degradation sensitive electrical parameters to address the IGBT wire bonding faults.The zero voltage state provides an inherent redundant feature that allows for a power switch to be diagnosed during its normal operation in a neutralpoint-clamped power inverter.The proposed prognostic approach obtains both the wire bonding failure features and junction temperature from the terminals of an IGBT module,which is regarded as non-invasive on-line health monitoring.The system performance can be affected by the designated testing point and testing window,which is discussed and experimentally validated.The proposed technique allows unhealthy wire bonding in IGBT modules online monitoring during the operational period of the inverter.And the proposed in-situ health monitoring of IGBT modules can be used for the industrial Internet of things.展开更多
基金supported by National Natural Science Foundation of China(No.U1834204)。
文摘After cumulative discharge of gas discharge tube(GDT),it is easy to form a short circuit pathway between the two electrodes,which increases the failure risk and causes severe influences on the protected object.To reduce the failure risk of GDT and improve cumulative discharge times before failure,this work aims to suppress the formation of two short-circuit pathways by optimizing the tube wall structure,the electrode materials and the electrode structure.A total of five improved GDT samples are designed by focusing on the insulation resistance change that occurs after the improvement;then,by combining these designs with the microscopic morphology changes inside the cavity and the differences in deposition composition,the reasons for the differences in the GDT failure risk are also analyzed.The experimental results show that compared with GDT of traditional structure and material,the method of adding grooves at both ends of the tube wall can effectively block the deposition pathway of the tube wall,and the cumulative discharge time before device failure is increased by 149%.On this basis,when the iron-nickel electrode is replaced with a tungsten-copper electrode,the difference in the electrode’s surface splash characteristics further extends the discharge time before failure by 183%.In addition,when compared with the traditional electrode structure,the method of adding an annular structure at the electrode edge to block the splashing pathway for the particles on the electrode surface shows no positive effect,and the cumulative discharge time before the failure of the two structures is reduced by 22.8%and 49.7%,respectively.Among these improved structures,the samples with grooves at both ends of the tube wall and tungsten-copper as their electrode material have the lowest failure risk.
基金supported by National Key R&D Program of China(No.2021YFB2401100).
文摘The modular multilevel matrix converter(M3C)is a potential frequency converter for low-frequency AC transmission.However,capacitor voltage control of high-voltage and largecapacity M3C is more difficult,especially for voltage balancing between branches.To solve this problem,this paper defines sequence circulating components and theoretically analyzes the influence mechanism of different sequence circulating components on branch capacitor voltage.A fully decoupled branch energy balancing control method based on four groups of sequence circulating components is proposed.This method can control capacitor voltages of nine branches in horizontal,vertical and diagonal directions.Considering influences of both circulating current and voltage,a cross decoupled control is designed to improve control precision.Simulation results are taken from a low-frequency transmission system based on PSCAD/EMTDC,and effectiveness and precision of the proposed branch energy balancing control method are verified in the case of nonuniform parameters and an unbalanced power system.
基金supported by National Key R&D Program of China(No.2021YFB2401100)the Science and Technology Project of State Grid Corporation of China(No.5211DS22002C).
文摘The cluster DC voltage balancing control adopting zero-sequence voltage injection is appropriate for the starconnected cascaded H-bridge STATCOM because no zerosequence currents are generated in the three-phase three-wire system.However,as the zero-sequence voltage is expressed in trigonometric form,traditional control methods involve many complicated operations,such as the square-root,trigonometric operations,and inverse tangent operations.To simplify cluster voltage balancing control,this paper converts the zero-sequence voltage to the dq frame in a DC representation by introducing a virtually orthogonal variable,and the DC components of the zero-sequence voltage in the dq frame are regulated linearly by proportional integral regulators,rather than being calculated from uneven active powers in traditional controls.This removes all complicated operations.Finally,this paper presents simulation and experimental results for a 400 V±7.5 kvar star-connected STATCOM,in balanced and unbalanced scenarios,thereby verifying the effectiveness of the proposed control.
基金supported by the National Key Research and Development Program of China(2017YFB0902701).
文摘The puncture of glass fibre reinforced polymer(GFRP)laminate is a primary damage pattern of wind turbine blades due to lightning strikes.A numerical simulation model of positive streamer propagation in a needle‐to‐plate air gap with a GFRP laminate is established to investigate the breakdown mechanism of GFRP laminate.The model not only considers the dynamics of charged particles in the air and the composite laminate,but also the current continuity at gas-solid interfaces.The simulated streamer discharge pattern and the surface streamer length are in good agreement with the observation results.The distributions and evolutions of the electron number density,electric field,and surface charge densities during streamer propagation are obtained.It is found that the enhancement of the electric field on the GFRP laminate is caused by the rapid deposition of positive and negative space charges on the GFRP laminate after a secondary streamer incepts on the lower surface of the GFRP laminate.The effects of the applied voltage,relative permittivity,and thickness of the GFRP laminate on the electric field on the GFRP laminate are investigated.The obtained results could assist in further under-standing of the mechanism of GFRP wind blade breakdown due to lightning strikes.
基金This work was supported by National Natural Science Foundation of China(U1834204).
文摘Requirements of the Internet of things for the network includes the ability to monitor the equipment and devices.Nowadays,the reliability of a power electronics converter has raised concerns of both academia and industry.In particular,power semiconductor devices are continuously exposed to excessive stress while being designed with high power handling capability and are considered as the most fragile component in power converters suffering from a high failure rate.Aiming to find an effective monitoring method which is also helpful for the Internet of Things and improve the reliability of a three-level neutral-point-clamped power inverter,an in-situ health monitoring method is proposed by harnessing the inverter operational characteristics and degradation sensitive electrical parameters to address the IGBT wire bonding faults.The zero voltage state provides an inherent redundant feature that allows for a power switch to be diagnosed during its normal operation in a neutralpoint-clamped power inverter.The proposed prognostic approach obtains both the wire bonding failure features and junction temperature from the terminals of an IGBT module,which is regarded as non-invasive on-line health monitoring.The system performance can be affected by the designated testing point and testing window,which is discussed and experimentally validated.The proposed technique allows unhealthy wire bonding in IGBT modules online monitoring during the operational period of the inverter.And the proposed in-situ health monitoring of IGBT modules can be used for the industrial Internet of things.