期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Investigation of Li-ion transport in Li7P3S11 and solid-state lithium batteries 被引量:3
1
作者 Chuang Yu Swapna Ganapathy +4 位作者 Ernst R.H.van Eck Lambert van Eijck niek de klerk Erik M.Kelder Marnix Wagemaker 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第11期1-7,共7页
The high Li-ion conductivity of the Li7P3S11 sulfide-based solid electrolyte makes it a promising candidate for all-solid-state lithium batteries. The Li-ion transport over electrode-electrolyte and electrolyteelectro... The high Li-ion conductivity of the Li7P3S11 sulfide-based solid electrolyte makes it a promising candidate for all-solid-state lithium batteries. The Li-ion transport over electrode-electrolyte and electrolyteelectrolyte interfaces, vital for the performance of solid-state batteries, is investigated by impedance spectroscopy and solid-state NMR experiments. An all-solid-state Li-ion battery is assembled with the Li7P3S11 electrolyte, nano-Li2S cathode and Li-In foil anode, showing a relatively large initial discharge capacity of 1139.5 m Ah/g at a current density of 0.064 m A/cm^ 2 retaining 850.0 m Ah/g after 30 cycles. Electrochemical impedance spectroscopy suggests that the decrease in capacity over cycling is due to the increased interfacial resistance between the electrode and the electrolyte. 1D exchange ^7Li NMR quantifies the interfacial Li-ion transport between the uncycled electrode and the electrolyte, resulting in a diffusion coefficient of 1.70(3) ×10^-14cm^2/s at 333 K and an energy barrier of 0.132 e V for the Li-ion transport between Li2S cathode and Li7P3S11 electrolyte. This indicates that the barrier for Li-ion transport over the electrode-electrolyte interface is small. However, the small diffusion coefficient for Li-ion diffusion between the Li2S and the Li7P3S11 suggests that these contact interfaces between electrode and electrolyte are relatively scarce, challenging the performance of these solid-state batteries. 展开更多
关键词 Li7P3S11 Li-ion transport Spin-lattice NMR Exchange NMR Solid-state battery
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部