Background Broilers stand out as one of the fastest-growing livestock globally,making a substantial contribution to animal meat production.However,the molecular and epigenetic mechanisms underlying the rapid growth an...Background Broilers stand out as one of the fastest-growing livestock globally,making a substantial contribution to animal meat production.However,the molecular and epigenetic mechanisms underlying the rapid growth and development of broiler chickens are still unclear.This study aims to explore muscle development patterns and regulatory networks during the postnatal rapid growth phase of fast-growing broilers.We measured the growth performance of Cornish(CC)and White Plymouth Rock(RR)over a 42-d period.Pectoral muscle samples from both CC and RR were randomly collected at day 21 after hatching(D21)and D42 for RNA-seq and ATAC-seq library construction.Results The consistent increase in body weight and pectoral muscle weight across both breeds was observed as they matured,with CC outpacing RR in terms of weight at each stage of development.Differential expression analysis identified 398 and 1,129 genes in the two dimensions of breeds and ages,respectively.A total of 75,149 ATAC-seq peaks were annotated in promoter,exon,intron and intergenic regions,with a higher number of peaks in the promoter and intronic regions.The age-biased genes and breed-biased genes of RNA-seq were combined with the ATAC-seq data for subsequent analysis.The results spotlighted the upregulation of ACTC1 and FDPS at D21,which were primarily associated with muscle structure development by gene cluster enrichment.Additionally,a noteworthy upregulation of MUSTN1,FOS and TGFB3 was spotted in broiler chickens at D42,which were involved in cell differentiation and muscle regeneration after injury,suggesting a regulatory role of muscle growth and repair.Conclusions This work provided a regulatory network of postnatal broiler chickens and revealed ACTC1 and MUSTN1 as the key responsible for muscle development and regeneration.Our findings highlight that rapid growth in broiler chickens triggers ongoing muscle damage and subsequent regeneration.These findings provide a foundation for future research to investigate the functional aspects of muscle development.展开更多
Background Hepatic steatosis is a prevalent manifestation of fatty liver, that has detrimental effect on the health and productivity of laying hens, resulting in economic losses to the poultry industry. Here, we aimed...Background Hepatic steatosis is a prevalent manifestation of fatty liver, that has detrimental effect on the health and productivity of laying hens, resulting in economic losses to the poultry industry. Here, we aimed to systematically investigate the genetic regulatory mechanisms of hepatic steatosis in laying hens.Methods Ninety individuals with the most prominent characteristics were selected from 686 laying hens according to the accumulation of lipid droplets in the liver, and were graded into three groups, including the control, mild hepatic steatosis and severe hepatic steatosis groups. A combination of transcriptome, proteome, acetylome and lipidome analyses, along with bioinformatics analysis were used to screen the key biological processes, modifications and lipids associated with hepatic steatosis.Results The rationality of the hepatic steatosis grouping was verified through liver biochemical assays and RNA-seq. Hepatic steatosis was characterized by increased lipid deposition and multiple metabolic abnormalities. Integration of proteome and acetylome revealed that differentially expressed proteins(DEPs) interacted with differentially acetylated proteins(DAPs) and were involved in maintaining the metabolic balance in the liver. Acetylation alterations mainly occurred in the progression from mild to severe hepatic steatosis, i.e., the enzymes in the fatty acid oxidation and bile acid synthesis pathways were significantly less acetylated in severe hepatic steatosis group than that in mild group(P < 0.05). Lipidomics detected a variety of sphingolipids(SPs) and glycerophospholipids(GPs) were negatively correlated with hepatic steatosis(r ≤-0.5, P < 0.05). Furthermore, the severity of hepatic steatosis was associated with a decrease in cholesterol and bile acid synthesis and an increase in exogenous cholesterol transport.Conclusions In addition to acquiring a global and thorough picture of hepatic steatosis in laying hens, we were able to reveal the role of acetylation in hepatic steatosis and depict the changes in hepatic cholesterol metabolism. The findings provides a wealth of information to facilitate a deeper understanding of the pathophysiology of fatty liver and contributes to the development of therapeutic strategies.展开更多
In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit...In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit satellites, and the directional nature of their signals, traditional monitoring methods are no longer suitable, especially in the case of multiple power level. Mobile crowdsensing(MCS), as a new technology, can make full use of idle resources to complete a variety of perceptual tasks. However, traditional MCS heavily relies on a centralized server and is vulnerable to single point of failure attacks. Therefore, we replace the original centralized server with a blockchain-based distributed service provider to enable its security. Therefore, in this work, we propose a blockchain-based MCS framework, in which we explain in detail how this framework can achieve abnormal frequency behavior monitoring in an inter-satellite spectrum sharing system. Then, under certain false alarm probability, we propose an abnormal spectrum detection algorithm based on mixed hypothesis test to maximize detection probability in single power level and multiple power level scenarios, respectively. Finally, a Bad out of Good(BooG) detector is proposed to ease the computational pressure on the blockchain nodes. Simulation results show the effectiveness of the proposed framework.展开更多
Timely detection and control of airborne disease is important to improve productivity. This study proposed a novel approach that utilizes micro polarization image features and a backpropagation neural network (BPNN) t...Timely detection and control of airborne disease is important to improve productivity. This study proposed a novel approach that utilizes micro polarization image features and a backpropagation neural network (BPNN) to classify and identify airborne disease spores in a greenhouse setting. Firstly, disease spores were collected in the greenhouse, and their surface morphological parameters were analyzed. Subsequently, the micropolarization imaging system for disease spores was established, and the micropolarization images of airborne disease spores from greenhouse crops were collected. Then the micropolarization images of airborne disease spores were processed, and the image features of polarization degree and polarization angle of disease spores were extracted. Finally, a disease spore classification model based on the BPNN was ultimately developed. The results showed that the texture position of the surface of the three disease spores was inconsistent, and the texture also showed an irregular shape. Texture information was present on the longitudinal and transverse axes, with the longitudinal axis exhibiting more uneven texture information. The polarization-degree images of the three disease spores exhibit variations in their representation within the entirety of the beam information. The disease spore polarization angle image exhibited the maximum levels of contrast and entropy when the Gabor filter’s direction was set to π/15. The recognition accuracy of cucumber downy mildew spores, tomato gray mildew spores, and cucumber powdery mildew spores were 75.00%, 83.33%, and 96.67%, respectively. The average recognition accuracy of disease spores was 86.67% based on BPNN and micropolarization image features. This study can provide a novel method for the detection of plant disease spores in the greenhouse.展开更多
Neoatherosclerosis(NA)within stents has become an important clinical problem after coronary artery stent implantation.In-stent restenosis and in-stent thrombosis are the two major complications following coronary sten...Neoatherosclerosis(NA)within stents has become an important clinical problem after coronary artery stent implantation.In-stent restenosis and in-stent thrombosis are the two major complications following coronary stent placement and seriously affect patient prognosis.As the common pathological basis of these two complications,NA plaques,unlike native atherosclerotic plaques,often grow around residual oxidized lipids and stent struts.The main components are foam cells formed by vascular smooth muscle cells(VSMCs)engulfing oxidized lipids at lipid residue sites.Current research mainly focuses on optical coherence tomography(OCT)and intravascular ultrasound(IVUS),but the specific pathogenesis of NA is still unclear.A thorough understanding of the pathogenesis and pathological features of NA provides a theoretical basis for clinical treatment.This article reviews the previous research of our research group and the current situation of domestic and foreign research.展开更多
This paper explores the association between intestinal microecology and digestive health and disease recovery in children with pneumonia.Intestinal microecological imbalance is common in children with pneumonia,which ...This paper explores the association between intestinal microecology and digestive health and disease recovery in children with pneumonia.Intestinal microecological imbalance is common in children with pneumonia,which is closely associated with digestive health and disease recovery.Intestinal microecological imbalance may affect digestive enzyme activity,intestinal mucosal barrier function,and nutrient absorption,which in turn affects digestive health.In addition,intestinal microecological imbalances may be associated with immune regulation,inflammatory responses,and pathogen suppression,affecting disease recovery.Strategies to regulate intestinal microecology include probiotic supplementation,dietary modification,and pharmacological treatment.Currently,the study of intestinal microecology in children with pneumonia faces challenges,and there is a need for improved research methods,individualized treatment strategies,and the development of novel probiotics.In conclusion,the intestinal microecology of children with pneumonia is closely related to digestive health and disease recovery,and the regulation of intestinal microecology is of great significance to the treatment of children with pneumonia.Furthermore,future research should further explore the application of the microecology of the intestinal microecology in the treatment of children with pneumonia.展开更多
The adrenal gland secretes a variety of hormones that regulate physiological functions,and adrenal lesions can lead to insidious or sudden onset diseases that are easily misdiagnosed.Recently,several young patients wi...The adrenal gland secretes a variety of hormones that regulate physiological functions,and adrenal lesions can lead to insidious or sudden onset diseases that are easily misdiagnosed.Recently,several young patients with unknown sudden and refractory cardiogenic shock or cardiac arrest(CA)were successfully treated in our emergency department by the application of venoarterial extracorporeal membrane oxygenation(VA-ECMO).These life-threatening conditions were finally determined to be caused by adrenal lesions,which highlight the bridging role of VA-ECMO.[1]展开更多
Background:Most duck eggs possess a fishy odor,indicating that ducks generally exhibit impaired trimethylamine(TMA)metabolism.TMA accumulation is responsible for this unpleasant odor,and TMA metabolism plays an essen-...Background:Most duck eggs possess a fishy odor,indicating that ducks generally exhibit impaired trimethylamine(TMA)metabolism.TMA accumulation is responsible for this unpleasant odor,and TMA metabolism plays an essen-tial role in trimethylaminuria(TMAU),also known as fish odor syndrome.In this study,we focused on the unusual TMA metabolism mechanism in ducks,and further explored the unclear reasons leading to the debilitating TMA metabolism.Methods:To achieve this,transcriptome,proteome,and metagenome analyses were first integrated based on the constructed duck populations with high and low TMA metabolism abilities.Additionally,further experiments were conducted to validate the hypothesis regarding the limited flavin-containing monooxygenase 3(FMO3)metabolism ability of ducks.Results:The study demonstrated that liver FMO3 and cecal microbes,including Akkermansia and Mucispirillum,par-ticipated in TMA metabolism in ducks.The limited oxidation ability of FMO3 explains the weakening of TMA metabo-lism in ducks.Nevertheless,it decreases lipid deposition and increases antibacterial activity,contributing to its survival and reproduction during the evolutionary adaptation process.Conclusions:This study demonstrated the function of FMO3 and intestinal microbes in regulating TMA metabolism and illustrated the biological significance of FMO3 impairment in ducks.展开更多
基金supported by the National Key Research and Development Program of China(2022YFF1000204)the National Natural Science Foundation of China(32102535)the Key Research and Development Program of Hainan province(ZDYF2023XDNY036)。
文摘Background Broilers stand out as one of the fastest-growing livestock globally,making a substantial contribution to animal meat production.However,the molecular and epigenetic mechanisms underlying the rapid growth and development of broiler chickens are still unclear.This study aims to explore muscle development patterns and regulatory networks during the postnatal rapid growth phase of fast-growing broilers.We measured the growth performance of Cornish(CC)and White Plymouth Rock(RR)over a 42-d period.Pectoral muscle samples from both CC and RR were randomly collected at day 21 after hatching(D21)and D42 for RNA-seq and ATAC-seq library construction.Results The consistent increase in body weight and pectoral muscle weight across both breeds was observed as they matured,with CC outpacing RR in terms of weight at each stage of development.Differential expression analysis identified 398 and 1,129 genes in the two dimensions of breeds and ages,respectively.A total of 75,149 ATAC-seq peaks were annotated in promoter,exon,intron and intergenic regions,with a higher number of peaks in the promoter and intronic regions.The age-biased genes and breed-biased genes of RNA-seq were combined with the ATAC-seq data for subsequent analysis.The results spotlighted the upregulation of ACTC1 and FDPS at D21,which were primarily associated with muscle structure development by gene cluster enrichment.Additionally,a noteworthy upregulation of MUSTN1,FOS and TGFB3 was spotted in broiler chickens at D42,which were involved in cell differentiation and muscle regeneration after injury,suggesting a regulatory role of muscle growth and repair.Conclusions This work provided a regulatory network of postnatal broiler chickens and revealed ACTC1 and MUSTN1 as the key responsible for muscle development and regeneration.Our findings highlight that rapid growth in broiler chickens triggers ongoing muscle damage and subsequent regeneration.These findings provide a foundation for future research to investigate the functional aspects of muscle development.
基金funded in part by grants from the National Natural Science Foundation of China (No.31930105)National Key Research and Development Program of China (2022YFF1000204)China Agriculture Research Systems (CARS-40)。
文摘Background Hepatic steatosis is a prevalent manifestation of fatty liver, that has detrimental effect on the health and productivity of laying hens, resulting in economic losses to the poultry industry. Here, we aimed to systematically investigate the genetic regulatory mechanisms of hepatic steatosis in laying hens.Methods Ninety individuals with the most prominent characteristics were selected from 686 laying hens according to the accumulation of lipid droplets in the liver, and were graded into three groups, including the control, mild hepatic steatosis and severe hepatic steatosis groups. A combination of transcriptome, proteome, acetylome and lipidome analyses, along with bioinformatics analysis were used to screen the key biological processes, modifications and lipids associated with hepatic steatosis.Results The rationality of the hepatic steatosis grouping was verified through liver biochemical assays and RNA-seq. Hepatic steatosis was characterized by increased lipid deposition and multiple metabolic abnormalities. Integration of proteome and acetylome revealed that differentially expressed proteins(DEPs) interacted with differentially acetylated proteins(DAPs) and were involved in maintaining the metabolic balance in the liver. Acetylation alterations mainly occurred in the progression from mild to severe hepatic steatosis, i.e., the enzymes in the fatty acid oxidation and bile acid synthesis pathways were significantly less acetylated in severe hepatic steatosis group than that in mild group(P < 0.05). Lipidomics detected a variety of sphingolipids(SPs) and glycerophospholipids(GPs) were negatively correlated with hepatic steatosis(r ≤-0.5, P < 0.05). Furthermore, the severity of hepatic steatosis was associated with a decrease in cholesterol and bile acid synthesis and an increase in exogenous cholesterol transport.Conclusions In addition to acquiring a global and thorough picture of hepatic steatosis in laying hens, we were able to reveal the role of acetylation in hepatic steatosis and depict the changes in hepatic cholesterol metabolism. The findings provides a wealth of information to facilitate a deeper understanding of the pathophysiology of fatty liver and contributes to the development of therapeutic strategies.
文摘In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit satellites, and the directional nature of their signals, traditional monitoring methods are no longer suitable, especially in the case of multiple power level. Mobile crowdsensing(MCS), as a new technology, can make full use of idle resources to complete a variety of perceptual tasks. However, traditional MCS heavily relies on a centralized server and is vulnerable to single point of failure attacks. Therefore, we replace the original centralized server with a blockchain-based distributed service provider to enable its security. Therefore, in this work, we propose a blockchain-based MCS framework, in which we explain in detail how this framework can achieve abnormal frequency behavior monitoring in an inter-satellite spectrum sharing system. Then, under certain false alarm probability, we propose an abnormal spectrum detection algorithm based on mixed hypothesis test to maximize detection probability in single power level and multiple power level scenarios, respectively. Finally, a Bad out of Good(BooG) detector is proposed to ease the computational pressure on the blockchain nodes. Simulation results show the effectiveness of the proposed framework.
基金supported by the National Natural Science Foundation of China(Grant No.32071905,3217895,and 32201686)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(No.PAPD-2023-87)+1 种基金The National Key Research and Development Program for Young Scientists(Grant 2022YFD2000200)General Program of Basic Science(Natural Science)Research in Higher Education Institutions of Jiangsu Province(Grant 23KJB210004).
文摘Timely detection and control of airborne disease is important to improve productivity. This study proposed a novel approach that utilizes micro polarization image features and a backpropagation neural network (BPNN) to classify and identify airborne disease spores in a greenhouse setting. Firstly, disease spores were collected in the greenhouse, and their surface morphological parameters were analyzed. Subsequently, the micropolarization imaging system for disease spores was established, and the micropolarization images of airborne disease spores from greenhouse crops were collected. Then the micropolarization images of airborne disease spores were processed, and the image features of polarization degree and polarization angle of disease spores were extracted. Finally, a disease spore classification model based on the BPNN was ultimately developed. The results showed that the texture position of the surface of the three disease spores was inconsistent, and the texture also showed an irregular shape. Texture information was present on the longitudinal and transverse axes, with the longitudinal axis exhibiting more uneven texture information. The polarization-degree images of the three disease spores exhibit variations in their representation within the entirety of the beam information. The disease spore polarization angle image exhibited the maximum levels of contrast and entropy when the Gabor filter’s direction was set to π/15. The recognition accuracy of cucumber downy mildew spores, tomato gray mildew spores, and cucumber powdery mildew spores were 75.00%, 83.33%, and 96.67%, respectively. The average recognition accuracy of disease spores was 86.67% based on BPNN and micropolarization image features. This study can provide a novel method for the detection of plant disease spores in the greenhouse.
基金supported by grants from the National Natural Science Foundation of China(Nos.82070376 and 81873491).
文摘Neoatherosclerosis(NA)within stents has become an important clinical problem after coronary artery stent implantation.In-stent restenosis and in-stent thrombosis are the two major complications following coronary stent placement and seriously affect patient prognosis.As the common pathological basis of these two complications,NA plaques,unlike native atherosclerotic plaques,often grow around residual oxidized lipids and stent struts.The main components are foam cells formed by vascular smooth muscle cells(VSMCs)engulfing oxidized lipids at lipid residue sites.Current research mainly focuses on optical coherence tomography(OCT)and intravascular ultrasound(IVUS),but the specific pathogenesis of NA is still unclear.A thorough understanding of the pathogenesis and pathological features of NA provides a theoretical basis for clinical treatment.This article reviews the previous research of our research group and the current situation of domestic and foreign research.
基金Shandong Province Traditional Chinese Medicine Science and Technology Project"Efficacy Evaluation of Acupoint Application Synergy Model Intervention in Bronchoscopic Treatment of Severe Mycoplasma Pneumonia in Children"(Project No.2020M177)。
文摘This paper explores the association between intestinal microecology and digestive health and disease recovery in children with pneumonia.Intestinal microecological imbalance is common in children with pneumonia,which is closely associated with digestive health and disease recovery.Intestinal microecological imbalance may affect digestive enzyme activity,intestinal mucosal barrier function,and nutrient absorption,which in turn affects digestive health.In addition,intestinal microecological imbalances may be associated with immune regulation,inflammatory responses,and pathogen suppression,affecting disease recovery.Strategies to regulate intestinal microecology include probiotic supplementation,dietary modification,and pharmacological treatment.Currently,the study of intestinal microecology in children with pneumonia faces challenges,and there is a need for improved research methods,individualized treatment strategies,and the development of novel probiotics.In conclusion,the intestinal microecology of children with pneumonia is closely related to digestive health and disease recovery,and the regulation of intestinal microecology is of great significance to the treatment of children with pneumonia.Furthermore,future research should further explore the application of the microecology of the intestinal microecology in the treatment of children with pneumonia.
基金Ruiyi Emergency Medical Research Fund(2021-22)Science and Technology Innovation Program of Hunan Province(2020SK53707)。
文摘The adrenal gland secretes a variety of hormones that regulate physiological functions,and adrenal lesions can lead to insidious or sudden onset diseases that are easily misdiagnosed.Recently,several young patients with unknown sudden and refractory cardiogenic shock or cardiac arrest(CA)were successfully treated in our emergency department by the application of venoarterial extracorporeal membrane oxygenation(VA-ECMO).These life-threatening conditions were finally determined to be caused by adrenal lesions,which highlight the bridging role of VA-ECMO.[1]
基金supported by the National Natural Science Foundation of China(31672408)the China Agriculture Research Systems(CARS-40)+1 种基金the National Key Research and Development Program of China(2021YFD1200803)the Program for Changjiang Scholars and Innovative Research Team in University(IRT_15R62).
文摘Background:Most duck eggs possess a fishy odor,indicating that ducks generally exhibit impaired trimethylamine(TMA)metabolism.TMA accumulation is responsible for this unpleasant odor,and TMA metabolism plays an essen-tial role in trimethylaminuria(TMAU),also known as fish odor syndrome.In this study,we focused on the unusual TMA metabolism mechanism in ducks,and further explored the unclear reasons leading to the debilitating TMA metabolism.Methods:To achieve this,transcriptome,proteome,and metagenome analyses were first integrated based on the constructed duck populations with high and low TMA metabolism abilities.Additionally,further experiments were conducted to validate the hypothesis regarding the limited flavin-containing monooxygenase 3(FMO3)metabolism ability of ducks.Results:The study demonstrated that liver FMO3 and cecal microbes,including Akkermansia and Mucispirillum,par-ticipated in TMA metabolism in ducks.The limited oxidation ability of FMO3 explains the weakening of TMA metabo-lism in ducks.Nevertheless,it decreases lipid deposition and increases antibacterial activity,contributing to its survival and reproduction during the evolutionary adaptation process.Conclusions:This study demonstrated the function of FMO3 and intestinal microbes in regulating TMA metabolism and illustrated the biological significance of FMO3 impairment in ducks.