Tomato is considered as the genetic model for climacteric fruits,in which three major players control the fruit ripening process:ethylene,ripening transcription factors,and DNA methylation.The fruitENCODE project has ...Tomato is considered as the genetic model for climacteric fruits,in which three major players control the fruit ripening process:ethylene,ripening transcription factors,and DNA methylation.The fruitENCODE project has now shown that there are multiple transcriptional circuits regulating fruit ripening in different species,and H3K27me3,instead of DNA methylation,plays a conserved role in restricting these ripening pathways.In addition,the function of the core tomato ripening transcription factors is now being questioned.We have employed CRISPR/Cas9 genome editing to mutate the SBP-CNR and NAC-NOR transcription factors,both of which are considered as master regulators in the current tomato ripening model.These plants only displayed delayed or partial non-ripening phenotypes,distinct from the original mutant plants,which categorically failed to ripen,suggesting that they might be gain-of-function mutants.Besides increased DNA methylation genome-wide,the original mutants also have hyper-H3K27me3 in ripening gene loci such as ACS2,RIN,and TDR4.It is most likely that multiple genetic and epigenetic factors have contributed to their strong non-ripening phenotypes.Hence,we propose that the field should move beyond these linear and twodimensional models and embrace the fact that important biological processes such as ripening are often regulated by highly redundant network with inputs from multiple levels.展开更多
BACKGROUND Gastric cancer is a common malignant tumor of the digestive tract,and endosco-pic submucosal dissection(ESD)is the preferred treatment for early-stage gastric cancer.The analysis of the epidemiological char...BACKGROUND Gastric cancer is a common malignant tumor of the digestive tract,and endosco-pic submucosal dissection(ESD)is the preferred treatment for early-stage gastric cancer.The analysis of the epidemiological characteristics of gastric mucosal tumors with different differentiation degrees and the influencing factors of long-term ESD efficacy may have certain significance for revealing the development of gastric cancer and ESD.AIM To analyze the features of gastric mucosal tumors at different differentiation levels,and to explore the prognostic factors of ESD.METHODS We retrospectively studied 301 lesions in 285 patients at The Second Affiliated Hospital of Xi'an Jiaotong University from 2014 to 2021,according to the latest Japanese guidelines(sixth edition),and divided them into low-grade intrae-pithelial neoplasia(LGIN),high-grade intraepithelial neoplasia(HGIN),and computed tomography at 3,6 and 12 months after ESD.We compared clinicopathologic characteristics,ESD efficacy,and complications with different degrees of differentiation,and analyzed the related factors associated with ESD.RESULTS HGIN and differentiated carcinoma patients were significantly older compared with LGIN patients(P<0.001)and accounted for more 0-IIc(P<0.001),atrophic gastritis was common(P<0.001),and irregular microvascular patterns(IMVPs)and demarcation lines(DLs)were more obvious(P<0.001).There was more infiltration in the undifferentiated carcinoma tissue(P<0.001),more abnormal folds and poorer mucosal peristalsis(P<0.001),and more obvious IMVPs,irregular microsurface patterns and DLs(P<0.05)than in the LGIN and HGIN tissues.The disease-free survival rates at 2,5,and 8 years after ESD were 95.0%,90.1%,and 86.9%,respectively.Undifferen-tiated lesions(HR 5.066),white moss(HR 7.187),incomplete resection(HR 3.658),and multiple primary cancers(HR 2.462)were significantly associated with poor prognosis.CONCLUSION Differentiations of gastric mucosal tumors have different epidemiological and endoscopic characteristics,which are closely related to the safety and efficacy of ESD.展开更多
One of the major problems in structural fatigue life analysis is establishing structural load spectra under actual operating conditions.This study conducts theoretical research and experimental validation of quasi-sta...One of the major problems in structural fatigue life analysis is establishing structural load spectra under actual operating conditions.This study conducts theoretical research and experimental validation of quasi-static load spectra on bogie frame structures of high-speed trains.The quasistatic load series that corresponds to quasi-static deformation modes are identified according to the structural form and bearing conditions of high-speed train bogie frames.Moreover,a force-measuring frame is designed and manufactured based on the quasi-static load series.The load decoupling model of the quasi-static load series is then established via calibration tests.Quasi-static load–time histories,together with online tests and decoupling analysis,are obtained for the intermediate range of the Beijing—Shanghai dedicated passenger line.The damage consistency calibration of the quasi-static discrete load spectra is performed according to a damage consistency criterion and a genetic algorithm.The calibrated damage that corresponds with the quasi-static discrete load spectra satisfies the safety requirements of bogie frames.展开更多
The effect of sodium chloride(NaCl)curing salt content on protein oxidation,lipid oxidation and lipolysis of Chinese dry sausage was investigated.Two groups Chinese dry sausages with 2%and 4%(m/m)salt content were stu...The effect of sodium chloride(NaCl)curing salt content on protein oxidation,lipid oxidation and lipolysis of Chinese dry sausage was investigated.Two groups Chinese dry sausages with 2%and 4%(m/m)salt content were studied.The degree of protein oxidation increased during the processes in two groups sausages,while the content of phospholipids decreased,neutral lipids and free fatty acids increased.The degree of protein oxidation,lipid oxidation and lipolysis in 4%NaCl content group was higher than those in 2%NaCl content group,while 4%NaCl content group has higher lipase activity.In conclusion,4%NaCl may facilitate the protein oxidation,lipid hydrolysis and oxidation in Chinese dry sausage,and the protein oxidation had strong correlation with lipid oxidation and lipolysis.The results could provide a basis for improving the technology of industrial production.展开更多
The effect of process and storage on the volatiles and odorant profi le of Chinese dry sausage was evaluated,as well as its physicochemical parameters.Microbial esterification and wine(27.54%–43.35%),and lipid oxidat...The effect of process and storage on the volatiles and odorant profi le of Chinese dry sausage was evaluated,as well as its physicochemical parameters.Microbial esterification and wine(27.54%–43.35%),and lipid oxidation(11.30%–34.92%)played a key role in flavor profile during process and storage.A significant increase of each volatile was detected during process except gradual decrease of volatiles from spices,while a gradual decrease of each volatile was detected during storage except signifi cant increase of volatiles from lipid oxidation and esterifi cation.15 and 6 odor-active compounds were respectively correlated(P<0.05)with the process and storage time.Level of heptanal,1-octen-3-ol,the ethyl of 2-methylbutanoic,3-methylbutanoic,butanoic,benzoic,hexanoic,heptanoic,octanoic and decanoic acid were best discriminators of process stage,while(E)-2-nonenal,ethyl hexanoate,ethyl heptanoate,and methyl decanoate,were marker compounds of storage time.An objective method was established to evaluate the stages of process and storage for samples.展开更多
The present study found expressions of a7 nicotinic acetylcholine receptor on hippocampal slices and hippocampal astrocytes using double immunofluorescence stainings. Expression of glial fibdllary acidic protein in th...The present study found expressions of a7 nicotinic acetylcholine receptor on hippocampal slices and hippocampal astrocytes using double immunofluorescence stainings. Expression of glial fibdllary acidic protein in the cultured hippocampal slices and hippocampal astrocytes significantly increased, and levels of macrophage inflammatory protein la, RANTES, interleukin-1β, intedeukin-6, and tumor necrosis factor-α increased in the supernatant of cultured astrocytes following exposure to 200 nM amyloid 13 protein 1-42. Preconditioning of 10 μM nicotine, a nicotinic acetylcholine receptor agonist, could attenuate the influence of amyloid β protein 1-42 in inflammatory mediator secretion of cultured astrocytes. Experimental findings indicated that α7 nicotinic acetylcholine receptor was expressed on the surface of hippocampal astrocytes, and activated a7 nicotinic acetylcholine receptor was shown to inhibit inflammation induced by amyloid β protein 1-42.展开更多
Unlike mammals with adaptive immunity,plants rely on their innate immunity based on pattern-triggered immunity(PTI)and effector-triggered immunity(ETI)for pathogen defense.Reactive oxygen species,known to play crucial...Unlike mammals with adaptive immunity,plants rely on their innate immunity based on pattern-triggered immunity(PTI)and effector-triggered immunity(ETI)for pathogen defense.Reactive oxygen species,known to play crucial roles in PTI and ETI,can perturb cellular redox homeostasis and lead to changes of redox-sensitive proteins through modification of cysteine sulfhydryl groups.Although redox regulation of protein functions has emerged as an important mechanism in several biological processes,little is known about redox proteins and how they function in PTI and ETI.In this study,cysTMT proteomics technology was used to identify similarities and differences of protein redox modifications in tomato resistant(PtoR)and susceptible(prf3)genotypes in response to Pseudomonas syringae pv tomato(Pst)infection.In addition,the results of the redox changes were compared and corrected with the protein level changes.A total of 90 potential redox-regulated proteins were identified with functions in carbohydrate and energy metabolism,biosynthesis of cysteine,sucrose and brassinosteroid,cell wall biogenesis,polysaccharide/starch biosynthesis,cuticle development,lipid metabolism,proteolysis,tricarboxylic acid cycle,protein targeting to vacuole,and oxidation–reduction.This inventory of previously unknown protein redox switches in tomato pathogen defense lays a foundation for future research toward understanding the biological significance of protein redox modifications in plant defense responses.展开更多
Combat system effectiveness simulation (CSES) is a special type of complex system simulation. Three non-functional requirements (NFRs), i.e. model composability, domain specific modeling, and model evolvability, are g...Combat system effectiveness simulation (CSES) is a special type of complex system simulation. Three non-functional requirements (NFRs), i.e. model composability, domain specific modeling, and model evolvability, are gaining higher priority from CSES users when evaluating different modeling methodologies for CSES. Traditional CSES modeling methodologies are either domain-neutral (lack of domain characteristics consideration and limited support for model composability) or domain-oriented (lack of openness and evolvability) and fall short of the three NFRs. Inspired by the concept of architecture in systems engineering and software engineering fields, we extend it into a concept of model architecture for complex simulation systems, and propose a model architecture-oriented modeling methodology in which the model architecture plays a central role in achieving the three NFRs. Various model-driven engineering (MDE) approaches and technologies, including simulation modeling platform (SMP), unified modeling language (UML), domain specific modeling (DSM), eclipse modeling framework (EMF), graphical modeling framework (GMF), and so forth, are applied where possible in representing the CSES model architecture and its components' behaviors from physical and cognitive domain aspects. A prototype CSES system, called weapon effectiveness simulation system (WESS), and a non-trivial air-combat simulation example are presented to demonstrate the methodology.展开更多
Microfluidic,as the systems for using microchannel(micron-or sub-micron scale)to process or manipulate microflow,is being widely applied in enzyme biotechnology and biocatalysis.Microfluidic immobilized enzyme reactor...Microfluidic,as the systems for using microchannel(micron-or sub-micron scale)to process or manipulate microflow,is being widely applied in enzyme biotechnology and biocatalysis.Microfluidic immobilized enzyme reactor(MIER)is a tool with great value for the study of catalytic property and optimal reaction parameter in a flourishing and highly producing manner.In view of its advantages in efficiency,economy,and addressable recognition especially,MIER occupies an important position in the investigation of life science,including molecular biology,bioanalysis and biosensing,biocatalysis etc.Immobilization of enzymes can generally improve their stability,and upon most occasions,the immobilized enzyme is endowed with recyclability.In this review,the enzyme immobilization techniques applied in MIER will be discussed,followed by summarizing the novel developments in the field of MIER for biocatalysis,bioconversion and bioanalysis.The preponderances and deficiencies of the current state-of-the-art preparation ways of MIER are peculiarly discussed.In addition,the prospects of its future study are outlined.展开更多
Recyclable polymers offer a great opportunity to address the environmental issues of plastics.Herein,functionalization of recyclable polymers,poly((R)-3,4-trans six-membered ring-fused GBL)(P((R)-M)),were reported via...Recyclable polymers offer a great opportunity to address the environmental issues of plastics.Herein,functionalization of recyclable polymers,poly((R)-3,4-trans six-membered ring-fused GBL)(P((R)-M)),were reported via end-group modifications and block/random copolymerizations.Di-n-butylmagnesium was selected to catalyze ring-opening polymerization(ROP)of(R)-M in the presence of a series of functional alcohols as the initiators.Block/random copolymerizations of(R)-M andε-caprolactone(ε-CL),L-lactide(L-LA)and trimethylene carbonate(TMC)were performed to control the onset decomposition temperature(T_(d)),melting temperature(T_(m))and glass transition temperature(T_(g)).These functionalized recyclable polymers would find broad applications as the sustainable plastics.展开更多
Since the research on verification to passive design strategies in sustainable building is at the initial stage,and its test method and verification conclusion are not scientific enough to validate,this paper proposes...Since the research on verification to passive design strategies in sustainable building is at the initial stage,and its test method and verification conclusion are not scientific enough to validate,this paper proposes the necessity of building physical environmental monitoring to quantitative optimization of passive strategies efficiency from the perspective of architecture design and building environment. Adopting comparative research method,this research chooses six types of atrium space in cold climate in China as a prototype,focusing on building physical environmental performance difference in and between atrium and building main space. Spatial parameters of the atrium space will be divided into four factors: spatial geometry,interfacial properties,internal and external related categories. With subdividing these four factors into sub-factors,this paper makes crosscomparison among the sub-factors to clarify passive strategies effectiveness in atrium. Data comparison analysis shows that Winter atrium passive strategy in cold regions from traditional view is not obvious in practical application,and test data need to be stratified refined in atrium design in case of optimizing passive strategy from building prototype perspective.展开更多
The Three-River Headwater Region(TRHR)of China is a typical representative of the alpine environment in the Central Asian plateau and the alpine grassland in the world.Grassland degradation is one of its serious eco-l...The Three-River Headwater Region(TRHR)of China is a typical representative of the alpine environment in the Central Asian plateau and the alpine grassland in the world.Grassland degradation is one of its serious eco-logical problems.The purpose of this study is to quantify the joint impacts of climate and human activities on grassland changes in TRHR after two phases of Ecological Conservation and Construction Project(Ecological Project).Grassland vegetation coverage is selected as an indicator for analyzing grassland changes.We adopt Sen+Mann-Kendall trend analysis,residual trend analysis and correlation analysis methods to analyze the trends in spatial-temporal changes and driving factors of grassland in TRHR from 2000 to 2019.The results show that:(1)The grassland has been mainly restored,and the degraded grassland area only accounts for 1.66%of TRHR.After the implementation of the first phase of the Ecological Project,the percentage of restored grassland area has significantly increased from 8.82%to 24.57%,and slightly decreased during the second phase.(2)The establish-ment of national nature reserves and the implementation of the Ecological Project have changed the situation that“the grassland inside the reserve is worse than that outside the reserve”.(3)Grassland restoration is mainly af-fected by the joint effects of climate and human activities.Nevertheless,grassland degradation is mainly affected by human activities such as overgrazing and grassland reclamation.All of these findings can enrich our under-standing of grassland restoration in TRHR.Artificial measures have certain limitations in promoting grassland restoration.Natural restoration should be considered when human beings strengthen ecological conservation and transform their production and life styles.展开更多
Due to the scale effect, the uniform distribution of reagents in continuous flow reactor becomes bad when the channel is enlarged to tens of millimeters. Microfluidic field strategy was proposed to produce high mixing...Due to the scale effect, the uniform distribution of reagents in continuous flow reactor becomes bad when the channel is enlarged to tens of millimeters. Microfluidic field strategy was proposed to produce high mixing efficiency in large-scale channel. A 3D spiral baffle structure(3SBS) was designed and optimized to form microfluidic field disturbed by continuous secondary flow in millimeter scale Y-shaped tube mixer(YSTM). Enhancement effect of the 3SBS in liquid-liquid homogeneous chemical processes was verified and evaluated through the combination of simulation and experiment. Compared with 1 mm YSTM, 10 mm YSTM with 3SBS increased the treatment capacity by 100 times, shortened the basic complete mixing time by 0.85 times, which proves the potential of microfluidic field strategy in enhancement and scale-up of liquid-liquid homogeneous chemical process.展开更多
Building buffer zone space is not only one of essential approaches for better mental quality of interior building space, but also an important factor that may influence interior thermal comfort and energy consumption....Building buffer zone space is not only one of essential approaches for better mental quality of interior building space, but also an important factor that may influence interior thermal comfort and energy consumption. This study aims to analyze regulative advantages of buffer zone to the surrounding functional spaces. Based on a fieldwork test in a typical office building in cold climate zone in Beijing,China,the monitor data show interior physical performance in the Winter. The research selects two types of different buffer zones in the same building. One is a south-faced greenhouse which has large dimension with plenty of vegetation,and the other is a simple atrium in the middle of five floor building with mount of skylights. The factors and their influence to surrounding functional spaces and the whole building are found out from the comparisons of collected data by floor to floor monitor test on both buffer zones at the same time. The comparisons of two types of buffer zones conclude that the greenhouse is more effective to air quality regulation but not so clearly wellperformed to thermal buffering as expected due to the dominate active central heating in the Winter. This fieldwork test results for building performance can be helpful for both architects and engineers in the early phase of sustainable design.展开更多
基金supported by funding from NSFC(31571898,31772029,31572173),GRF 14108117,AoE/M-403/16.Sequencing data have been deposited in the NCBI Sequence Read Archive under the accession number PRJNA512992.
文摘Tomato is considered as the genetic model for climacteric fruits,in which three major players control the fruit ripening process:ethylene,ripening transcription factors,and DNA methylation.The fruitENCODE project has now shown that there are multiple transcriptional circuits regulating fruit ripening in different species,and H3K27me3,instead of DNA methylation,plays a conserved role in restricting these ripening pathways.In addition,the function of the core tomato ripening transcription factors is now being questioned.We have employed CRISPR/Cas9 genome editing to mutate the SBP-CNR and NAC-NOR transcription factors,both of which are considered as master regulators in the current tomato ripening model.These plants only displayed delayed or partial non-ripening phenotypes,distinct from the original mutant plants,which categorically failed to ripen,suggesting that they might be gain-of-function mutants.Besides increased DNA methylation genome-wide,the original mutants also have hyper-H3K27me3 in ripening gene loci such as ACS2,RIN,and TDR4.It is most likely that multiple genetic and epigenetic factors have contributed to their strong non-ripening phenotypes.Hence,we propose that the field should move beyond these linear and twodimensional models and embrace the fact that important biological processes such as ripening are often regulated by highly redundant network with inputs from multiple levels.
基金Supported by Development Program of Shaanxi Province,No.2021SF-221.
文摘BACKGROUND Gastric cancer is a common malignant tumor of the digestive tract,and endosco-pic submucosal dissection(ESD)is the preferred treatment for early-stage gastric cancer.The analysis of the epidemiological characteristics of gastric mucosal tumors with different differentiation degrees and the influencing factors of long-term ESD efficacy may have certain significance for revealing the development of gastric cancer and ESD.AIM To analyze the features of gastric mucosal tumors at different differentiation levels,and to explore the prognostic factors of ESD.METHODS We retrospectively studied 301 lesions in 285 patients at The Second Affiliated Hospital of Xi'an Jiaotong University from 2014 to 2021,according to the latest Japanese guidelines(sixth edition),and divided them into low-grade intrae-pithelial neoplasia(LGIN),high-grade intraepithelial neoplasia(HGIN),and computed tomography at 3,6 and 12 months after ESD.We compared clinicopathologic characteristics,ESD efficacy,and complications with different degrees of differentiation,and analyzed the related factors associated with ESD.RESULTS HGIN and differentiated carcinoma patients were significantly older compared with LGIN patients(P<0.001)and accounted for more 0-IIc(P<0.001),atrophic gastritis was common(P<0.001),and irregular microvascular patterns(IMVPs)and demarcation lines(DLs)were more obvious(P<0.001).There was more infiltration in the undifferentiated carcinoma tissue(P<0.001),more abnormal folds and poorer mucosal peristalsis(P<0.001),and more obvious IMVPs,irregular microsurface patterns and DLs(P<0.05)than in the LGIN and HGIN tissues.The disease-free survival rates at 2,5,and 8 years after ESD were 95.0%,90.1%,and 86.9%,respectively.Undifferen-tiated lesions(HR 5.066),white moss(HR 7.187),incomplete resection(HR 3.658),and multiple primary cancers(HR 2.462)were significantly associated with poor prognosis.CONCLUSION Differentiations of gastric mucosal tumors have different epidemiological and endoscopic characteristics,which are closely related to the safety and efficacy of ESD.
基金supported by the National Natural Science Foundation of China(U1134201)partly supported by the National High Technology Research and Development Program of China(0912JJ0104-DL00-H-HZ-001-20100105)
文摘One of the major problems in structural fatigue life analysis is establishing structural load spectra under actual operating conditions.This study conducts theoretical research and experimental validation of quasi-static load spectra on bogie frame structures of high-speed trains.The quasistatic load series that corresponds to quasi-static deformation modes are identified according to the structural form and bearing conditions of high-speed train bogie frames.Moreover,a force-measuring frame is designed and manufactured based on the quasi-static load series.The load decoupling model of the quasi-static load series is then established via calibration tests.Quasi-static load–time histories,together with online tests and decoupling analysis,are obtained for the intermediate range of the Beijing—Shanghai dedicated passenger line.The damage consistency calibration of the quasi-static discrete load spectra is performed according to a damage consistency criterion and a genetic algorithm.The calibrated damage that corresponds with the quasi-static discrete load spectra satisfies the safety requirements of bogie frames.
基金This study was financially supported by National Key R&D Program of China(grant No.2017YFD0400105)Natural Science Foundation of Beijing Municipality(grant No.6192009)Fengtai science and technology new star(grant No.KJXX201902).
文摘The effect of sodium chloride(NaCl)curing salt content on protein oxidation,lipid oxidation and lipolysis of Chinese dry sausage was investigated.Two groups Chinese dry sausages with 2%and 4%(m/m)salt content were studied.The degree of protein oxidation increased during the processes in two groups sausages,while the content of phospholipids decreased,neutral lipids and free fatty acids increased.The degree of protein oxidation,lipid oxidation and lipolysis in 4%NaCl content group was higher than those in 2%NaCl content group,while 4%NaCl content group has higher lipase activity.In conclusion,4%NaCl may facilitate the protein oxidation,lipid hydrolysis and oxidation in Chinese dry sausage,and the protein oxidation had strong correlation with lipid oxidation and lipolysis.The results could provide a basis for improving the technology of industrial production.
基金The authors were very grateful for the financial supports from national key research and development program of China(No.2017YFD0400105).
文摘The effect of process and storage on the volatiles and odorant profi le of Chinese dry sausage was evaluated,as well as its physicochemical parameters.Microbial esterification and wine(27.54%–43.35%),and lipid oxidation(11.30%–34.92%)played a key role in flavor profile during process and storage.A significant increase of each volatile was detected during process except gradual decrease of volatiles from spices,while a gradual decrease of each volatile was detected during storage except signifi cant increase of volatiles from lipid oxidation and esterifi cation.15 and 6 odor-active compounds were respectively correlated(P<0.05)with the process and storage time.Level of heptanal,1-octen-3-ol,the ethyl of 2-methylbutanoic,3-methylbutanoic,butanoic,benzoic,hexanoic,heptanoic,octanoic and decanoic acid were best discriminators of process stage,while(E)-2-nonenal,ethyl hexanoate,ethyl heptanoate,and methyl decanoate,were marker compounds of storage time.An objective method was established to evaluate the stages of process and storage for samples.
基金supported by the National Natural Science Foundation of China,No.30471928 and No.30973162the Natural Science Foundation of Guangdong Province,No.07005203
文摘The present study found expressions of a7 nicotinic acetylcholine receptor on hippocampal slices and hippocampal astrocytes using double immunofluorescence stainings. Expression of glial fibdllary acidic protein in the cultured hippocampal slices and hippocampal astrocytes significantly increased, and levels of macrophage inflammatory protein la, RANTES, interleukin-1β, intedeukin-6, and tumor necrosis factor-α increased in the supernatant of cultured astrocytes following exposure to 200 nM amyloid 13 protein 1-42. Preconditioning of 10 μM nicotine, a nicotinic acetylcholine receptor agonist, could attenuate the influence of amyloid β protein 1-42 in inflammatory mediator secretion of cultured astrocytes. Experimental findings indicated that α7 nicotinic acetylcholine receptor was expressed on the surface of hippocampal astrocytes, and activated a7 nicotinic acetylcholine receptor was shown to inhibit inflammation induced by amyloid β protein 1-42.
基金The redox-proteomics work was partly supported by awards from the National Science Foundation(MCB 0818051 and MCB 1412547)to S.Chen.
文摘Unlike mammals with adaptive immunity,plants rely on their innate immunity based on pattern-triggered immunity(PTI)and effector-triggered immunity(ETI)for pathogen defense.Reactive oxygen species,known to play crucial roles in PTI and ETI,can perturb cellular redox homeostasis and lead to changes of redox-sensitive proteins through modification of cysteine sulfhydryl groups.Although redox regulation of protein functions has emerged as an important mechanism in several biological processes,little is known about redox proteins and how they function in PTI and ETI.In this study,cysTMT proteomics technology was used to identify similarities and differences of protein redox modifications in tomato resistant(PtoR)and susceptible(prf3)genotypes in response to Pseudomonas syringae pv tomato(Pst)infection.In addition,the results of the redox changes were compared and corrected with the protein level changes.A total of 90 potential redox-regulated proteins were identified with functions in carbohydrate and energy metabolism,biosynthesis of cysteine,sucrose and brassinosteroid,cell wall biogenesis,polysaccharide/starch biosynthesis,cuticle development,lipid metabolism,proteolysis,tricarboxylic acid cycle,protein targeting to vacuole,and oxidation–reduction.This inventory of previously unknown protein redox switches in tomato pathogen defense lays a foundation for future research toward understanding the biological significance of protein redox modifications in plant defense responses.
基金supported by the National Natural Science Foundation of China(61273198)
文摘Combat system effectiveness simulation (CSES) is a special type of complex system simulation. Three non-functional requirements (NFRs), i.e. model composability, domain specific modeling, and model evolvability, are gaining higher priority from CSES users when evaluating different modeling methodologies for CSES. Traditional CSES modeling methodologies are either domain-neutral (lack of domain characteristics consideration and limited support for model composability) or domain-oriented (lack of openness and evolvability) and fall short of the three NFRs. Inspired by the concept of architecture in systems engineering and software engineering fields, we extend it into a concept of model architecture for complex simulation systems, and propose a model architecture-oriented modeling methodology in which the model architecture plays a central role in achieving the three NFRs. Various model-driven engineering (MDE) approaches and technologies, including simulation modeling platform (SMP), unified modeling language (UML), domain specific modeling (DSM), eclipse modeling framework (EMF), graphical modeling framework (GMF), and so forth, are applied where possible in representing the CSES model architecture and its components' behaviors from physical and cognitive domain aspects. A prototype CSES system, called weapon effectiveness simulation system (WESS), and a non-trivial air-combat simulation example are presented to demonstrate the methodology.
文摘Microfluidic,as the systems for using microchannel(micron-or sub-micron scale)to process or manipulate microflow,is being widely applied in enzyme biotechnology and biocatalysis.Microfluidic immobilized enzyme reactor(MIER)is a tool with great value for the study of catalytic property and optimal reaction parameter in a flourishing and highly producing manner.In view of its advantages in efficiency,economy,and addressable recognition especially,MIER occupies an important position in the investigation of life science,including molecular biology,bioanalysis and biosensing,biocatalysis etc.Immobilization of enzymes can generally improve their stability,and upon most occasions,the immobilized enzyme is endowed with recyclability.In this review,the enzyme immobilization techniques applied in MIER will be discussed,followed by summarizing the novel developments in the field of MIER for biocatalysis,bioconversion and bioanalysis.The preponderances and deficiencies of the current state-of-the-art preparation ways of MIER are peculiarly discussed.In addition,the prospects of its future study are outlined.
基金supported by The National Natural Science Foundation of China(21504039)。
文摘Recyclable polymers offer a great opportunity to address the environmental issues of plastics.Herein,functionalization of recyclable polymers,poly((R)-3,4-trans six-membered ring-fused GBL)(P((R)-M)),were reported via end-group modifications and block/random copolymerizations.Di-n-butylmagnesium was selected to catalyze ring-opening polymerization(ROP)of(R)-M in the presence of a series of functional alcohols as the initiators.Block/random copolymerizations of(R)-M andε-caprolactone(ε-CL),L-lactide(L-LA)and trimethylene carbonate(TMC)were performed to control the onset decomposition temperature(T_(d)),melting temperature(T_(m))and glass transition temperature(T_(g)).These functionalized recyclable polymers would find broad applications as the sustainable plastics.
基金Sponsored by the Key Project of National Natural Science Foundation of China (Grant No.51138004)the National Science and Technology Support Program (Grant No.2012BAJ10B02)
文摘Since the research on verification to passive design strategies in sustainable building is at the initial stage,and its test method and verification conclusion are not scientific enough to validate,this paper proposes the necessity of building physical environmental monitoring to quantitative optimization of passive strategies efficiency from the perspective of architecture design and building environment. Adopting comparative research method,this research chooses six types of atrium space in cold climate in China as a prototype,focusing on building physical environmental performance difference in and between atrium and building main space. Spatial parameters of the atrium space will be divided into four factors: spatial geometry,interfacial properties,internal and external related categories. With subdividing these four factors into sub-factors,this paper makes crosscomparison among the sub-factors to clarify passive strategies effectiveness in atrium. Data comparison analysis shows that Winter atrium passive strategy in cold regions from traditional view is not obvious in practical application,and test data need to be stratified refined in atrium design in case of optimizing passive strategy from building prototype perspective.
基金This research is jointly funded by Key Technologies Research and De-velopment Program of China(Grant No.2017YFC0404503)funding project for basic scientific research operations of China’s Central Public Welfare Scientific Research Institutes(AR2117).
文摘The Three-River Headwater Region(TRHR)of China is a typical representative of the alpine environment in the Central Asian plateau and the alpine grassland in the world.Grassland degradation is one of its serious eco-logical problems.The purpose of this study is to quantify the joint impacts of climate and human activities on grassland changes in TRHR after two phases of Ecological Conservation and Construction Project(Ecological Project).Grassland vegetation coverage is selected as an indicator for analyzing grassland changes.We adopt Sen+Mann-Kendall trend analysis,residual trend analysis and correlation analysis methods to analyze the trends in spatial-temporal changes and driving factors of grassland in TRHR from 2000 to 2019.The results show that:(1)The grassland has been mainly restored,and the degraded grassland area only accounts for 1.66%of TRHR.After the implementation of the first phase of the Ecological Project,the percentage of restored grassland area has significantly increased from 8.82%to 24.57%,and slightly decreased during the second phase.(2)The establish-ment of national nature reserves and the implementation of the Ecological Project have changed the situation that“the grassland inside the reserve is worse than that outside the reserve”.(3)Grassland restoration is mainly af-fected by the joint effects of climate and human activities.Nevertheless,grassland degradation is mainly affected by human activities such as overgrazing and grassland reclamation.All of these findings can enrich our under-standing of grassland restoration in TRHR.Artificial measures have certain limitations in promoting grassland restoration.Natural restoration should be considered when human beings strengthen ecological conservation and transform their production and life styles.
基金supported by the National Key Research and Development Program of China (2021YFC2101900 and 2019YFA0905000)National Natural Science Foundation of China (21908094, 21776130 and 22078150)+1 种基金Nanjing International Joint Research and Development Project (202002037)Top-notch Academic Programs Project of Jiangsu Higher Education Institutions。
文摘Due to the scale effect, the uniform distribution of reagents in continuous flow reactor becomes bad when the channel is enlarged to tens of millimeters. Microfluidic field strategy was proposed to produce high mixing efficiency in large-scale channel. A 3D spiral baffle structure(3SBS) was designed and optimized to form microfluidic field disturbed by continuous secondary flow in millimeter scale Y-shaped tube mixer(YSTM). Enhancement effect of the 3SBS in liquid-liquid homogeneous chemical processes was verified and evaluated through the combination of simulation and experiment. Compared with 1 mm YSTM, 10 mm YSTM with 3SBS increased the treatment capacity by 100 times, shortened the basic complete mixing time by 0.85 times, which proves the potential of microfluidic field strategy in enhancement and scale-up of liquid-liquid homogeneous chemical process.
基金Sponsored by the Key Project of National Natural Science Foundation of China(Grant No.51138004)the National Science and Technology Support Program(Grant No.2012BAJ10B02)
文摘Building buffer zone space is not only one of essential approaches for better mental quality of interior building space, but also an important factor that may influence interior thermal comfort and energy consumption. This study aims to analyze regulative advantages of buffer zone to the surrounding functional spaces. Based on a fieldwork test in a typical office building in cold climate zone in Beijing,China,the monitor data show interior physical performance in the Winter. The research selects two types of different buffer zones in the same building. One is a south-faced greenhouse which has large dimension with plenty of vegetation,and the other is a simple atrium in the middle of five floor building with mount of skylights. The factors and their influence to surrounding functional spaces and the whole building are found out from the comparisons of collected data by floor to floor monitor test on both buffer zones at the same time. The comparisons of two types of buffer zones conclude that the greenhouse is more effective to air quality regulation but not so clearly wellperformed to thermal buffering as expected due to the dominate active central heating in the Winter. This fieldwork test results for building performance can be helpful for both architects and engineers in the early phase of sustainable design.