Silicon is considered to be one of the most promising anode materials for lithium-ion batteries(LIBs),but its application is limited by the large volume expansion during alloying and dealloying.The constructing of a h...Silicon is considered to be one of the most promising anode materials for lithium-ion batteries(LIBs),but its application is limited by the large volume expansion during alloying and dealloying.The constructing of a high-performance solid electrolyte interface(SEI) film on the surface of the anode material is considered to be one of the effective strategies to mitigate volume expansion of silicon-based anode.In this study,an intermittent discharge strategy which helps to improve the utilization efficiency of electrolyte additive of lithium difluorobisoxalate phosphate(LiDFBOP) is proposed to construct a highly conductive and dense SEI film.The results of electrochemical and physical characterization and theoretical calculations show that the intermittent discharge in the voltage range from open circuit voltage(OCV) to 1.8 V facilitates the diffusion of the soluble products,creates the conditions for the repeated direct contact between Si@C anode and LiDFBOP additive,increases the decomposition of LiDFBOP additive,and thus produces a uniform,dense and inorganics-rich(Li_(2)C_(2)O_(4),LiF and Li_(x)PO_yF_z) SEI film.Subsequently,this SEI film helps to ensure the even intercalation/de-intercalation of Li^(+) in the SEI film and the homogeneous diffusion of Li^(+) inside the Si particles,decreasing the internal stresses and anisotropic phase transitions,maintaining the integrity of Si particles,inhibiting the volume expansion and thu s improving the electrochemical performance of cells.This study not only improves the utilization efficiency of expensive additives through a simply and low-cost method,but also enriches the strategy to improve the electrochemical performance of Si@C anode through interfacial engineering.展开更多
By optimizing electrolyte formulation to inhibit the deposition of transition metal ions(TMIs) on the surface of the graphite anode is an effective way to improve the electrochemical performance of lithium-ion batteri...By optimizing electrolyte formulation to inhibit the deposition of transition metal ions(TMIs) on the surface of the graphite anode is an effective way to improve the electrochemical performance of lithium-ion batteries.At present,it is generally believed the formation of an effective interfacial film on the surface of the anode electrode is the leading factor in reducing the dissolution of TMIs and prevent TMIs from being embedded in the electrode.It ignores the influence of the solvation structures in the electrolyte system with different composition,and is not conducive to the design of the electrolyte formulation from the perspective of changing the concentration and the preferred solvent to inhibit the degradation of battery performance caused by TMIs deposition.In this work,by analyzing the special solvation structures of the high-concentra tion electrolyte,we study the main reason why high-concentration electrolyte inhibits the destructive effect of Mn(Ⅱ) on the electrochemical performance of LIBs.By combining the potentialresolved in-situ electrochemical impedance spectroscopy technology(PRIs-EIS) and density functional theory(DFT) calculation,we find that Mn(Ⅱ) mainly exists in the form of contact ions pairs(CIPs) and aggregates(AGGs) in high-concentration electrolyte.These solvation structures can reduce the destructive effect of Mn(Ⅱ) on battery performance from two aspects:on the one hand,it can rise the lowest unoccupied orbital(LUMO) value of the solvation structures of Mn(Ⅱ),thereby reducing the chance of its reduction;on the other hand,the decrease of Mn2+ions reduction can reduce the deposition of metallic manganese in the solid electrolyte interphase(SEI),thereby avoiding the continuous growth of the SEI.This study can be provided inspiration for the design of electrolytes to inhibit the destructive effect of TMls on LIBs.展开更多
Interfacial engineering is a promising approach for enhancing electrochemical performance,but rich and efficient interfacial active sites remain a challenge in fabrication.Herein,RuO_(2)-PdO heterostructure nanowire n...Interfacial engineering is a promising approach for enhancing electrochemical performance,but rich and efficient interfacial active sites remain a challenge in fabrication.Herein,RuO_(2)-PdO heterostructure nanowire networks(NWs) with rich interfaces and defects supported on carbon(RuO_(2)-PdO NWs/C) for alkaline hydrogen oxidation reaction(HOR) was formed by a seed induction-oriented attachment-thermal treatment method for the first time.As expected,the RuO_(2)-PdO NWs/C(72.8% Ru atomic content in metal) exhibits an excellent activity in alkaline HOR with a mass specific exchange current density(jo,m) of 1061 A gRuPd-1,which is 3.1 times of commercial Pt/C and better than most of the reported nonPt noble metal HOR electrocatalysts.Even at the high potential(~0.5 V vs.RHE) or the presence of CO(5 vol%),the RuO_(2)-PdO NWs/C still effectively catalyzes the alkaline HOR.Structure/electrochemical analysis and theoretical calculations reveal that the interfaces between RuO_(2) and PdO act as the active sites.The electronic interactions between the two species and the rich defects for the interfacial active sites weaken the adsorption of Had,also strengthen the adsorption of OHad,and accelerate the alkaline HOR process.Moreover,OHadon RuO_(2) can spillover to the interfaces,keeping the RuO_(2)-PdO NWs/C with the stable current density at higher potential and high resistance to CO poisoning.展开更多
Silicon anodes are considered to be the most promising alternatives owing to their theoretical specific capacity,which is almost 10 times higher than that of graphite anodes.However,huge volume changes during charging...Silicon anodes are considered to be the most promising alternatives owing to their theoretical specific capacity,which is almost 10 times higher than that of graphite anodes.However,huge volume changes during charging and discharging affect their interface stability,which strongly limits their application in commercial batteries.Herein,a popcorn-structured silicon-carbon composite(SiNPs@graphene@C),composed of silicon nanoparticles(SiNPs),graphene spheres and pitch-based carbon,is prepared by spraydrying followed by a wet process.The resulting SiNPs@graphene@C composite has good flexibility and elastic-strain capacity due to the graphene substrate,and it possesses macrostructural integrity and mechanical stability during cycling due to the rigid carbon–carbon chemical bonds.As a result,it shows a discharge-specific capacity of 481.3 mAh g^(-1)and a capacity retention of 82.9%after 500 cycles at 1 A g^(-1).Besides,the initial coulomb efficiency is increased from 65.7%to 86.5%by pre-lithiation,which improves the feasibility of commercialising the SiNPs@graphene@C composite.展开更多
基金Department of Education of Gansu Province: Industrial Support Plan Project (2022CYZC-23)National Natural Science Foundation of China (22269012)Gansu Key Research and Development Program (23YFGA0053)。
文摘Silicon is considered to be one of the most promising anode materials for lithium-ion batteries(LIBs),but its application is limited by the large volume expansion during alloying and dealloying.The constructing of a high-performance solid electrolyte interface(SEI) film on the surface of the anode material is considered to be one of the effective strategies to mitigate volume expansion of silicon-based anode.In this study,an intermittent discharge strategy which helps to improve the utilization efficiency of electrolyte additive of lithium difluorobisoxalate phosphate(LiDFBOP) is proposed to construct a highly conductive and dense SEI film.The results of electrochemical and physical characterization and theoretical calculations show that the intermittent discharge in the voltage range from open circuit voltage(OCV) to 1.8 V facilitates the diffusion of the soluble products,creates the conditions for the repeated direct contact between Si@C anode and LiDFBOP additive,increases the decomposition of LiDFBOP additive,and thus produces a uniform,dense and inorganics-rich(Li_(2)C_(2)O_(4),LiF and Li_(x)PO_yF_z) SEI film.Subsequently,this SEI film helps to ensure the even intercalation/de-intercalation of Li^(+) in the SEI film and the homogeneous diffusion of Li^(+) inside the Si particles,decreasing the internal stresses and anisotropic phase transitions,maintaining the integrity of Si particles,inhibiting the volume expansion and thu s improving the electrochemical performance of cells.This study not only improves the utilization efficiency of expensive additives through a simply and low-cost method,but also enriches the strategy to improve the electrochemical performance of Si@C anode through interfacial engineering.
基金supported by the Natural Science Foundation of Gansu Province for Youths(21JR7RA254)the Gansu Provincial Department of Education: Innovation Fund Project(2022A-029)+1 种基金the Major Special Fund of Gansu Province(21ZD4GA031)the Lanzhou University of Technology Hongliu First-class Discipline Construction Program and Gansu Province Central Government Guided Local Science and Technology Development Fund ProjectIndustrialization of Automotive Low-Temperature Lithium-ion Battery Manufacturing Technology Achievements。
文摘By optimizing electrolyte formulation to inhibit the deposition of transition metal ions(TMIs) on the surface of the graphite anode is an effective way to improve the electrochemical performance of lithium-ion batteries.At present,it is generally believed the formation of an effective interfacial film on the surface of the anode electrode is the leading factor in reducing the dissolution of TMIs and prevent TMIs from being embedded in the electrode.It ignores the influence of the solvation structures in the electrolyte system with different composition,and is not conducive to the design of the electrolyte formulation from the perspective of changing the concentration and the preferred solvent to inhibit the degradation of battery performance caused by TMIs deposition.In this work,by analyzing the special solvation structures of the high-concentra tion electrolyte,we study the main reason why high-concentration electrolyte inhibits the destructive effect of Mn(Ⅱ) on the electrochemical performance of LIBs.By combining the potentialresolved in-situ electrochemical impedance spectroscopy technology(PRIs-EIS) and density functional theory(DFT) calculation,we find that Mn(Ⅱ) mainly exists in the form of contact ions pairs(CIPs) and aggregates(AGGs) in high-concentration electrolyte.These solvation structures can reduce the destructive effect of Mn(Ⅱ) on battery performance from two aspects:on the one hand,it can rise the lowest unoccupied orbital(LUMO) value of the solvation structures of Mn(Ⅱ),thereby reducing the chance of its reduction;on the other hand,the decrease of Mn2+ions reduction can reduce the deposition of metallic manganese in the solid electrolyte interphase(SEI),thereby avoiding the continuous growth of the SEI.This study can be provided inspiration for the design of electrolytes to inhibit the destructive effect of TMls on LIBs.
基金supported by the National Natural Science Foundation of China (22262018)Young Science and Technology Fund in Gansu Province of China (21JR7RA252)+2 种基金Natural Research Fund of Gansu Province (20JR5RA441)Lanzhou Open Competition Mechanism,Merit Based Admission Project Major Fund (2021-JB-6)National Engineering&Fund for National Nickel and Cobalt Advanced Materials Engineering Research Center(GCZX2021JSKF001)。
文摘Interfacial engineering is a promising approach for enhancing electrochemical performance,but rich and efficient interfacial active sites remain a challenge in fabrication.Herein,RuO_(2)-PdO heterostructure nanowire networks(NWs) with rich interfaces and defects supported on carbon(RuO_(2)-PdO NWs/C) for alkaline hydrogen oxidation reaction(HOR) was formed by a seed induction-oriented attachment-thermal treatment method for the first time.As expected,the RuO_(2)-PdO NWs/C(72.8% Ru atomic content in metal) exhibits an excellent activity in alkaline HOR with a mass specific exchange current density(jo,m) of 1061 A gRuPd-1,which is 3.1 times of commercial Pt/C and better than most of the reported nonPt noble metal HOR electrocatalysts.Even at the high potential(~0.5 V vs.RHE) or the presence of CO(5 vol%),the RuO_(2)-PdO NWs/C still effectively catalyzes the alkaline HOR.Structure/electrochemical analysis and theoretical calculations reveal that the interfaces between RuO_(2) and PdO act as the active sites.The electronic interactions between the two species and the rich defects for the interfacial active sites weaken the adsorption of Had,also strengthen the adsorption of OHad,and accelerate the alkaline HOR process.Moreover,OHadon RuO_(2) can spillover to the interfaces,keeping the RuO_(2)-PdO NWs/C with the stable current density at higher potential and high resistance to CO poisoning.
基金supported by the Gansu Provincial Department of Education:Industrial Support Program Project(2021CYZC-18)the Major Science and Technology Projects of Gansu Province(21ZD4GA031)+2 种基金the Key R&D plan of Gansu Province(21YF5GA079)the Lanzhou University of Technology Hongliu First-class Discipline Construction ProgramEducation Department of Gansu Province:Excellent Graduate Student Innovation Star Project(2021CXZX-456)。
文摘Silicon anodes are considered to be the most promising alternatives owing to their theoretical specific capacity,which is almost 10 times higher than that of graphite anodes.However,huge volume changes during charging and discharging affect their interface stability,which strongly limits their application in commercial batteries.Herein,a popcorn-structured silicon-carbon composite(SiNPs@graphene@C),composed of silicon nanoparticles(SiNPs),graphene spheres and pitch-based carbon,is prepared by spraydrying followed by a wet process.The resulting SiNPs@graphene@C composite has good flexibility and elastic-strain capacity due to the graphene substrate,and it possesses macrostructural integrity and mechanical stability during cycling due to the rigid carbon–carbon chemical bonds.As a result,it shows a discharge-specific capacity of 481.3 mAh g^(-1)and a capacity retention of 82.9%after 500 cycles at 1 A g^(-1).Besides,the initial coulomb efficiency is increased from 65.7%to 86.5%by pre-lithiation,which improves the feasibility of commercialising the SiNPs@graphene@C composite.