Phishing,an Internet fraudwhere individuals are deceived into revealing critical personal and account information,poses a significant risk to both consumers and web-based institutions.Data indicates a persistent rise ...Phishing,an Internet fraudwhere individuals are deceived into revealing critical personal and account information,poses a significant risk to both consumers and web-based institutions.Data indicates a persistent rise in phishing attacks.Moreover,these fraudulent schemes are progressively becoming more intricate,thereby rendering them more challenging to identify.Hence,it is imperative to utilize sophisticated algorithms to address this issue.Machine learning is a highly effective approach for identifying and uncovering these harmful behaviors.Machine learning(ML)approaches can identify common characteristics in most phishing assaults.In this paper,we propose an ensemble approach and compare it with six machine learning techniques to determine the type of website and whether it is normal or not based on two phishing datasets.After that,we used the normalization technique on the dataset to transform the range of all the features into the same range.The findings of this paper for all algorithms are as follows in the first dataset based on accuracy,precision,recall,and F1-score,respectively:Decision Tree(DT)(0.964,0.961,0.976,0.968),Random Forest(RF)(0.970,0.964,0.984,0.974),Gradient Boosting(GB)(0.960,0.959,0.971,0.965),XGBoost(XGB)(0.973,0.976,0.976,0.976),AdaBoost(0.934,0.934,0.950,0.942),Multi Layer Perceptron(MLP)(0.970,0.971,0.976,0.974)and Voting(0.978,0.975,0.987,0.981).So,the Voting classifier gave the best results.While in the second dataset,all the algorithms gave the same results in four evaluation metrics,which indicates that each of them can effectively accomplish the prediction process.Also,this approach outperformed the previous work in detecting phishing websites with high accuracy,a lower false negative rate,a shorter prediction time,and a lower false positive rate.展开更多
Internet of Health Things(IoHT)is a subset of Internet of Things(IoT)technology that includes interconnected medical devices and sensors used in medical and healthcare information systems.However,IoHT is susceptible t...Internet of Health Things(IoHT)is a subset of Internet of Things(IoT)technology that includes interconnected medical devices and sensors used in medical and healthcare information systems.However,IoHT is susceptible to cybersecurity threats due to its reliance on low-power biomedical devices and the use of open wireless channels for communication.In this article,we intend to address this shortcoming,and as a result,we propose a new scheme called,the certificateless anonymous authentication(CAA)scheme.The proposed scheme is based on hyperelliptic curve cryptography(HECC),an enhanced variant of elliptic curve cryptography(ECC)that employs a smaller key size of 80 bits as compared to 160 bits.The proposed scheme is secure against various attacks in both formal and informal security analyses.The formal study makes use of the Real-or-Random(ROR)model.A thorough comparative study of the proposed scheme is conducted for the security and efficiency of the proposed scheme with the relevant existing schemes.The results demonstrate that the proposed scheme not only ensures high security for health-related data but also increases efficiency.The proposed scheme’s computation cost is 2.88 ms,and the communication cost is 1440 bits,which shows its better efficiency compared to its counterpart schemes.展开更多
As the Internet of Things(IoT)continues to expand,incorporating a vast array of devices into a digital ecosystem also increases the risk of cyber threats,necessitating robust defense mechanisms.This paper presents an ...As the Internet of Things(IoT)continues to expand,incorporating a vast array of devices into a digital ecosystem also increases the risk of cyber threats,necessitating robust defense mechanisms.This paper presents an innovative hybrid deep learning architecture that excels at detecting IoT threats in real-world settings.Our proposed model combines Convolutional Neural Networks(CNN),Bidirectional Long Short-Term Memory(BLSTM),Gated Recurrent Units(GRU),and Attention mechanisms into a cohesive framework.This integrated structure aims to enhance the detection and classification of complex cyber threats while accommodating the operational constraints of diverse IoT systems.We evaluated our model using the RT-IoT2022 dataset,which includes various devices,standard operations,and simulated attacks.Our research’s significance lies in the comprehensive evaluation metrics,including Cohen Kappa and Matthews Correlation Coefficient(MCC),which underscore the model’s reliability and predictive quality.Our model surpassed traditional machine learning algorithms and the state-of-the-art,achieving over 99.6%precision,recall,F1-score,False Positive Rate(FPR),Detection Time,and accuracy,effectively identifying specific threats such as Message Queuing Telemetry Transport(MQTT)Publish,Denial of Service Synchronize network packet crafting tool(DOS SYN Hping),and Network Mapper Operating System Detection(NMAP OS DETECTION).The experimental analysis reveals a significant improvement over existing detection systems,significantly enhancing IoT security paradigms.Through our experimental analysis,we have demonstrated a remarkable enhancement in comparison to existing detection systems,which significantly strength-ens the security standards of IoT.Our model effectively addresses the need for advanced,dependable,and adaptable security solutions,serving as a symbol of the power of deep learning in strengthening IoT ecosystems amidst the constantly evolving cyber threat landscape.This achievement marks a significant stride towards protecting the integrity of IoT infrastructure,ensuring operational resilience,and building privacy in this groundbreaking technology.展开更多
基金funding from Deanship of Scientific Research in King Faisal University with Grant Number KFU 241085.
文摘Phishing,an Internet fraudwhere individuals are deceived into revealing critical personal and account information,poses a significant risk to both consumers and web-based institutions.Data indicates a persistent rise in phishing attacks.Moreover,these fraudulent schemes are progressively becoming more intricate,thereby rendering them more challenging to identify.Hence,it is imperative to utilize sophisticated algorithms to address this issue.Machine learning is a highly effective approach for identifying and uncovering these harmful behaviors.Machine learning(ML)approaches can identify common characteristics in most phishing assaults.In this paper,we propose an ensemble approach and compare it with six machine learning techniques to determine the type of website and whether it is normal or not based on two phishing datasets.After that,we used the normalization technique on the dataset to transform the range of all the features into the same range.The findings of this paper for all algorithms are as follows in the first dataset based on accuracy,precision,recall,and F1-score,respectively:Decision Tree(DT)(0.964,0.961,0.976,0.968),Random Forest(RF)(0.970,0.964,0.984,0.974),Gradient Boosting(GB)(0.960,0.959,0.971,0.965),XGBoost(XGB)(0.973,0.976,0.976,0.976),AdaBoost(0.934,0.934,0.950,0.942),Multi Layer Perceptron(MLP)(0.970,0.971,0.976,0.974)and Voting(0.978,0.975,0.987,0.981).So,the Voting classifier gave the best results.While in the second dataset,all the algorithms gave the same results in four evaluation metrics,which indicates that each of them can effectively accomplish the prediction process.Also,this approach outperformed the previous work in detecting phishing websites with high accuracy,a lower false negative rate,a shorter prediction time,and a lower false positive rate.
文摘Internet of Health Things(IoHT)is a subset of Internet of Things(IoT)technology that includes interconnected medical devices and sensors used in medical and healthcare information systems.However,IoHT is susceptible to cybersecurity threats due to its reliance on low-power biomedical devices and the use of open wireless channels for communication.In this article,we intend to address this shortcoming,and as a result,we propose a new scheme called,the certificateless anonymous authentication(CAA)scheme.The proposed scheme is based on hyperelliptic curve cryptography(HECC),an enhanced variant of elliptic curve cryptography(ECC)that employs a smaller key size of 80 bits as compared to 160 bits.The proposed scheme is secure against various attacks in both formal and informal security analyses.The formal study makes use of the Real-or-Random(ROR)model.A thorough comparative study of the proposed scheme is conducted for the security and efficiency of the proposed scheme with the relevant existing schemes.The results demonstrate that the proposed scheme not only ensures high security for health-related data but also increases efficiency.The proposed scheme’s computation cost is 2.88 ms,and the communication cost is 1440 bits,which shows its better efficiency compared to its counterpart schemes.
基金funding from Deanship of Scientific Research in King Faisal University with Grant Number KFU241648.
文摘As the Internet of Things(IoT)continues to expand,incorporating a vast array of devices into a digital ecosystem also increases the risk of cyber threats,necessitating robust defense mechanisms.This paper presents an innovative hybrid deep learning architecture that excels at detecting IoT threats in real-world settings.Our proposed model combines Convolutional Neural Networks(CNN),Bidirectional Long Short-Term Memory(BLSTM),Gated Recurrent Units(GRU),and Attention mechanisms into a cohesive framework.This integrated structure aims to enhance the detection and classification of complex cyber threats while accommodating the operational constraints of diverse IoT systems.We evaluated our model using the RT-IoT2022 dataset,which includes various devices,standard operations,and simulated attacks.Our research’s significance lies in the comprehensive evaluation metrics,including Cohen Kappa and Matthews Correlation Coefficient(MCC),which underscore the model’s reliability and predictive quality.Our model surpassed traditional machine learning algorithms and the state-of-the-art,achieving over 99.6%precision,recall,F1-score,False Positive Rate(FPR),Detection Time,and accuracy,effectively identifying specific threats such as Message Queuing Telemetry Transport(MQTT)Publish,Denial of Service Synchronize network packet crafting tool(DOS SYN Hping),and Network Mapper Operating System Detection(NMAP OS DETECTION).The experimental analysis reveals a significant improvement over existing detection systems,significantly enhancing IoT security paradigms.Through our experimental analysis,we have demonstrated a remarkable enhancement in comparison to existing detection systems,which significantly strength-ens the security standards of IoT.Our model effectively addresses the need for advanced,dependable,and adaptable security solutions,serving as a symbol of the power of deep learning in strengthening IoT ecosystems amidst the constantly evolving cyber threat landscape.This achievement marks a significant stride towards protecting the integrity of IoT infrastructure,ensuring operational resilience,and building privacy in this groundbreaking technology.