Using the Wireless Sensor Networks WSNs in a wide variety of applications is currently considered one of the most challenging solutions. For instance, this technology has evolved the agriculture field, with the precis...Using the Wireless Sensor Networks WSNs in a wide variety of applications is currently considered one of the most challenging solutions. For instance, this technology has evolved the agriculture field, with the precision agriculture challenge. In fact, the cost of sensors and communication infrastructure continuously trend down as long as the technological advances. So, more growers dare to implement WSN for their crops. This technology has drawn substantial interests by improving agriculture productivity. The idea consists of deploying a number of sensors in a given agricultural parcel in order to monitor the land and crop conditions. These readings help the farmer to make the right inputs at the right moment. In this paper, we propose a complete solution for gathering different type of data from variable fields of a large agricultural parcel. In fact, with the in-field variability, adopting a unique data gathering solution for all kinds of fields reveals an inconvenient approach. Besides, as a fault-tolerant application, precision agriculture does not require a high precision value of sensed data. So, our approach deals with a context aware data gathering strategy. In other words, depending on a defined context for the monitored field, the data collector will decide the data gathering strategy to follow. We prove that this approach improves considerably the lifetime of the application.展开更多
文摘Using the Wireless Sensor Networks WSNs in a wide variety of applications is currently considered one of the most challenging solutions. For instance, this technology has evolved the agriculture field, with the precision agriculture challenge. In fact, the cost of sensors and communication infrastructure continuously trend down as long as the technological advances. So, more growers dare to implement WSN for their crops. This technology has drawn substantial interests by improving agriculture productivity. The idea consists of deploying a number of sensors in a given agricultural parcel in order to monitor the land and crop conditions. These readings help the farmer to make the right inputs at the right moment. In this paper, we propose a complete solution for gathering different type of data from variable fields of a large agricultural parcel. In fact, with the in-field variability, adopting a unique data gathering solution for all kinds of fields reveals an inconvenient approach. Besides, as a fault-tolerant application, precision agriculture does not require a high precision value of sensed data. So, our approach deals with a context aware data gathering strategy. In other words, depending on a defined context for the monitored field, the data collector will decide the data gathering strategy to follow. We prove that this approach improves considerably the lifetime of the application.