This paper is devoted to the study of frequency effects on hardness profile of AISI 4340 spline shaft heat-treated by induction through an extensive 3D finite element method simulation and structured experimental inve...This paper is devoted to the study of frequency effects on hardness profile of AISI 4340 spline shaft heat-treated by induction through an extensive 3D finite element method simulation and structured experimental investigation. Based on coupled electromagnetic and thermal fields analysis, the 3D model is used to estimate the temperature distribution and the hardness profile. The proposed study examines the hardening process parameters, such as frequency, induced current density and heating time, known to have an influence on hardened surface and builds the simulation model step by step. The established model can provide not only an accurate prediction of temperature distribution and hardness profile but also a comprehensive analysis of machine parameters effects, especially the frequency. The numerical results achieved by this model are good and present a great agreement to the experimental data.展开更多
Laser surface transformation hardening becomes one of the most effective processes used to improve wear and fatigue resistance of mechanical parts. In this process, the material physicochemical properties and the heat...Laser surface transformation hardening becomes one of the most effective processes used to improve wear and fatigue resistance of mechanical parts. In this process, the material physicochemical properties and the heating system parameters have significant effects on the characteristics of the hardened surface. To appropriately exploit the benefits presented by the laser surface hardening, it is necessary to develop a comprehensive strategy to control the process variables in order to produce desired hardened surface attributes without being forced to use the traditional and fastidious trial and error procedures. The paper presents a study of hardness profile predictive modeling and experimental validation for spline shafts using a 3D model. The proposed approach is based on thermal and metallurgical simulations, experimental investigations and statistical analysis to build the prediction model. The simulation of the hardening process is carried out using 3D finite element model on commercial software. The model is used to estimate the temperature distribution and the hardness profile attributes for various hardening parameters, such as laser power, shaft rotation speed and scanning speed. The experimental calibration and validation of the model are performed on a 3 kW Nd:Yag laser system using a structured experimental design and confirmed statistical analysis tools. The results reveal that the model can provide not only a consistent and accurate prediction of temperature distribution and hardness profile characteristics under variable hardening parameters and conditions but also a comprehensive and quantitative analysis of process parameters effects. The modelling results show a great concordance between predicted and measured values for the dimensions of hardened zones.展开更多
Paracetamol is a non-steroidal, anti-inflammatory drug widely used in pharmaceutical applications for its sturdy, antipyretic and analgesic action. However, an overdose of paracetamol can cause fulminant hepatic necro...Paracetamol is a non-steroidal, anti-inflammatory drug widely used in pharmaceutical applications for its sturdy, antipyretic and analgesic action. However, an overdose of paracetamol can cause fulminant hepatic necrosis and other toxic effects. Thus, the development of advantageous analytical tools to detect and determine paracetamol is required. Due to simplicity, higher sensitivity and selectivity as well as costefficiency, electrochemical sensors were fully investigated in last decades. This review describes the advancements made in the development of electrochemical sensors for the paracetamol detection and quantification in pharmaceutical and biological samples. The progress made in electrochemical sensors for the selective detection of paracetamol in the last 10 years was examined, with a special focus on highly innovative features introduced by nanotechnology. As the literature is rather extensive, we tried to simplify this work by summarizing and grouping electrochemical sensors according to the by which manner their substrates were chemically modified and the analytical performances obtained.展开更多
This paper presents an investigation of non-stationary induction heating process applied to AISI 4340 steel spline shafts based on 3D simulation and experimental validation. The study is based on the knowledge, concer...This paper presents an investigation of non-stationary induction heating process applied to AISI 4340 steel spline shafts based on 3D simulation and experimental validation. The study is based on the knowledge, concerning the form of correlations between various induction heating parameters and the final hardness profile, developed in the case of stationary induction heating. The proposed approach focuses on analyzing the effects of variation of frequency, power and especially scanning speed through an extensive 3D finite element method simulation, comprehensive sensitivity study and structured experimental efforts. Based on coupled electromagnetic and thermal fields analysis, the developed 3D model is used to estimate the temperature distribution and the hardness profile. Experimentations conducted on a commercial dual-frequency induction machine for AISI 4340 steel splines confirm the feasibility and the validity of the proposed modelling procedure. The 3D model validation reveals a great concordance between simulated and measured results, confirms that the model can effectively be used as framework for understanding the process and for assessing the effects of various parameters on the hardening process quality and performance and consequently leads to the most relevant variables to use in an eventual hardness profile prediction model.展开更多
This paper presents a numerical and experimental analysis study of the temperature distribution in a cylindrical specimen heat treated by laser and quenched in ambient temperature. The cylinder studied is made of AISI...This paper presents a numerical and experimental analysis study of the temperature distribution in a cylindrical specimen heat treated by laser and quenched in ambient temperature. The cylinder studied is made of AISI-4340 steel and has a diameter of 14.5-mm and a length of 50-mm. The temperature distribution is discretized by using a three-dimensional numerical finite difference method. The temperature gradient of the transformation of the microstructure is generated by a laser source Nd-YAG 3.0-kW manipulated using a robotic arm programmed to control the movements of the laser source in space and in time. The experimental measurement of surface temperature and air temperature in the vicinity of the specimen allows us to determine the values of the absorption coefficient and the coefficient of heat transfer by convection, which are essential data for a precise numerical prediction of the case depth. Despite an unsteady dynamic regime at the level of convective and radiation heat losses, the analysis of the averaged results of the temperature sensors shows a consistency with the results of microhardness measurements. The feasibility and effectiveness of the proposed approach lead to an accurate and reliable mathematical model able to predict the temperature distribution in a cylindrical workpiece heat treated by laser.展开更多
Laser heat treatment is considered to be one of best-performing manufacturing processes used currently due to its flexibility and its ability to develop parts with complex geometries. In fact, this process is able to ...Laser heat treatment is considered to be one of best-performing manufacturing processes used currently due to its flexibility and its ability to develop parts with complex geometries. In fact, this process is able to produce reliable parts with hard, thin martensite and compressive residual stresses. This paper explores the heat treatment applied to 4340 cylindrical parts heated using a Nd: Yag 3 kW laser source. In this case, the hardness profile is correlated to process parameters such as the laser source power, the beam scanning speed and the revolution speed of the part during heating. Based on preliminary tests stipulating that each parameter is varied alone within a specific range, a systematic design of final tests is performed using Taguchi matrix. The obtained results are analyzed using ANOVA method to extract the effects, the contributions and the interaction between the factors. The results are then exploited to study the sensitivity of the case depth according the variation of the process parameters. The developed model exhibits good potential for converging towards a robust model able to predict the hardness curve and to generalize it for other dimensions of cylindrical parts.展开更多
DNA is the carrier of all cellular genetic information and increasingly used in nanotechnology. The study of DNA molecule achieved <em>in vitro</em> while submitting the DNA to all chemicals agent capabili...DNA is the carrier of all cellular genetic information and increasingly used in nanotechnology. The study of DNA molecule achieved <em>in vitro</em> while submitting the DNA to all chemicals agent capabilities to destabilize links hydrogen, such as pH, temperature. In fact, the DNA enveloped in the membrane cellular, so it is legitimate to study the influence of membrane undulations. In this work, we try to show that the fluctuations of the membrane can be considerate as a physics agent is also capable to destabilize links hydrogen. In this investigation, we assume that each pair base formed an angle <em>a</em><sub><em>n</em></sub> with the membrane’s surface. We have proposed a theoretical model, and we have established a relationship between the angle formed by the pair base <span style="white-space:nowrap;"><em><span style="white-space:nowrap;">θ</span></em><sub><em>eq</em></sub><em> </em></span> and <em>a</em><sub><em>n</em></sub> angle formed by the membrane and each pair base. We assume that DNA and biomembrane interact via a realistic potential of Morse type. To this end, use is made of a generalized model that extends that introduced by M. Peyrard and A. R. Bishop in the past modified by M. Zoli. This generalized model is based on the resolution of a Schr<span style="white-space:nowrap;">ö</span>dinger-like equation. The exact resolution gives the expression of the ground state, and the associated eigenvalue (energy) that equals the free energy, in the thermodynamic limit. First, we compute the denaturation temperature of DNA strands critical temperature. Second, we deduce all critical properties that mainly depend on the parameters of the model, and we quantify the effects of the membrane undulations. These undulations renormalize all physical quantities, such as harmonic stacking, melting temperature, eigenfunctions, eigenvalues and regular part of specific heat.展开更多
Quality assessment and prediction becomes one of the most critical requirements for improving reliability, efficiency and safety of laser surface transformation hardening process (LSTHP). Accurate and efficient model ...Quality assessment and prediction becomes one of the most critical requirements for improving reliability, efficiency and safety of laser surface transformation hardening process (LSTHP). Accurate and efficient model to perform non-destructive quality estimation is an essential part of the assessment. This paper presents a structured and comprehensive approach developed to design an effective artificial neural network (ANN) based model for quality estimation and prediction in LSTHP using a commercial 3 kW Nd:Yag laser. The proposed approach examines laser hardening parameters and conditions known to have an influence on performance characteristics of hardened surface such as hardened bead width (HBW) and hardened depth (HD) and builds a quality prediction model step by step. The modeling procedure begins by examining, through a structured experimental investigations and exhaustive 3D finite element method simulation efforts, the relationships between laser hardening parameters and characteristics of hardened surface and their sensitivity to the process conditions. Using these results and various statistical tools, different quality prediction models are developed and evaluated. The results demonstrate that the ANN based assessment and prediction proposed approach can effectively lead to a consistent model able to accurately and reliably provide an appropriate prediction of hardened surface characteristics under variable hardening parameters and conditions.展开更多
Laser surface hardening is a very promising hardening process for ferrous alloys where transformations occur during cooling after laser heating in the solid state. The characteristics of the hardened surface depend on...Laser surface hardening is a very promising hardening process for ferrous alloys where transformations occur during cooling after laser heating in the solid state. The characteristics of the hardened surface depend on the physicochemical properties of the material as well as the heating system parameters. To exploit the benefits presented by the laser hardening process, it is necessary to develop an integrated strategy to control the process parameters in order to produce desired hardened surface attributes without being forced to use the traditional and fastidious trial and error procedures. This study presents a comprehensive modelling approach for predicting the hardened surface physical and geometrical attributes. The laser surface transformation hardening of cylindrical AISI 4340 steel workpieces is modeled using the conventional regression equation method as well as artificial neural network method. The process parameters included in the study are laser power, beam scanning speed, and the workpiece rotational speed. The upper and the lower limits for each parameter are chosen considering the start of the transformation hardening and the maximum hardened zone without surface melting. The resulting models are able to predict the depths representing the maximum hardness zone, the hardness drop zone, and the overheated zone without martensite transformation. Because of its ability to model highly nonlinear problems, the ANN based model presents the best modelling results and can predict the hardness profile with good accuracy.展开更多
Laser surface hardening becomes one of the most effective techniques used to enhance wear and fatigue resistance of mechanical parts. The characteristics of the hardened surface depend on the physicochemical propertie...Laser surface hardening becomes one of the most effective techniques used to enhance wear and fatigue resistance of mechanical parts. The characteristics of the hardened surface depend on the physicochemical properties of the material as well as the heating system parameters. To adequately exploit the benefits presented by the laser heating method, it is necessary to develop a comprehensive strategy to control the process parameters in order to produce desired hardened surface attributes without being forced to use the traditional and fastidious trial and error procedures. This study presents a comprehensive approach used to build a simplified model for predicting the hardness profile. A finite element method based prediction model for AISI 4340 steel is investigated. A circular shape with a Gaussian distribution is used for modeling the laser heat source. COMSOL MULTIPHYSICS software is used to solve the heat transfer equations, estimate the temperature distribution in the part and consequently predict the hardness profile. A commercial 3 kW Nd:Yag laser system is combined to a structured experimental design and confirmed statistical analysis tools for conducting the experimental calibration and validation of the model. The results reveal that the model can effectively lead to a consistent and accurate prediction of the hardness profile characteristics under variable hardening parameters and conditions. The results show great concordance between predicted and measured values for the dimensions of hardened and melted zones.展开更多
文摘This paper is devoted to the study of frequency effects on hardness profile of AISI 4340 spline shaft heat-treated by induction through an extensive 3D finite element method simulation and structured experimental investigation. Based on coupled electromagnetic and thermal fields analysis, the 3D model is used to estimate the temperature distribution and the hardness profile. The proposed study examines the hardening process parameters, such as frequency, induced current density and heating time, known to have an influence on hardened surface and builds the simulation model step by step. The established model can provide not only an accurate prediction of temperature distribution and hardness profile but also a comprehensive analysis of machine parameters effects, especially the frequency. The numerical results achieved by this model are good and present a great agreement to the experimental data.
文摘Laser surface transformation hardening becomes one of the most effective processes used to improve wear and fatigue resistance of mechanical parts. In this process, the material physicochemical properties and the heating system parameters have significant effects on the characteristics of the hardened surface. To appropriately exploit the benefits presented by the laser surface hardening, it is necessary to develop a comprehensive strategy to control the process variables in order to produce desired hardened surface attributes without being forced to use the traditional and fastidious trial and error procedures. The paper presents a study of hardness profile predictive modeling and experimental validation for spline shafts using a 3D model. The proposed approach is based on thermal and metallurgical simulations, experimental investigations and statistical analysis to build the prediction model. The simulation of the hardening process is carried out using 3D finite element model on commercial software. The model is used to estimate the temperature distribution and the hardness profile attributes for various hardening parameters, such as laser power, shaft rotation speed and scanning speed. The experimental calibration and validation of the model are performed on a 3 kW Nd:Yag laser system using a structured experimental design and confirmed statistical analysis tools. The results reveal that the model can provide not only a consistent and accurate prediction of temperature distribution and hardness profile characteristics under variable hardening parameters and conditions but also a comprehensive and quantitative analysis of process parameters effects. The modelling results show a great concordance between predicted and measured values for the dimensions of hardened zones.
文摘Paracetamol is a non-steroidal, anti-inflammatory drug widely used in pharmaceutical applications for its sturdy, antipyretic and analgesic action. However, an overdose of paracetamol can cause fulminant hepatic necrosis and other toxic effects. Thus, the development of advantageous analytical tools to detect and determine paracetamol is required. Due to simplicity, higher sensitivity and selectivity as well as costefficiency, electrochemical sensors were fully investigated in last decades. This review describes the advancements made in the development of electrochemical sensors for the paracetamol detection and quantification in pharmaceutical and biological samples. The progress made in electrochemical sensors for the selective detection of paracetamol in the last 10 years was examined, with a special focus on highly innovative features introduced by nanotechnology. As the literature is rather extensive, we tried to simplify this work by summarizing and grouping electrochemical sensors according to the by which manner their substrates were chemically modified and the analytical performances obtained.
文摘This paper presents an investigation of non-stationary induction heating process applied to AISI 4340 steel spline shafts based on 3D simulation and experimental validation. The study is based on the knowledge, concerning the form of correlations between various induction heating parameters and the final hardness profile, developed in the case of stationary induction heating. The proposed approach focuses on analyzing the effects of variation of frequency, power and especially scanning speed through an extensive 3D finite element method simulation, comprehensive sensitivity study and structured experimental efforts. Based on coupled electromagnetic and thermal fields analysis, the developed 3D model is used to estimate the temperature distribution and the hardness profile. Experimentations conducted on a commercial dual-frequency induction machine for AISI 4340 steel splines confirm the feasibility and the validity of the proposed modelling procedure. The 3D model validation reveals a great concordance between simulated and measured results, confirms that the model can effectively be used as framework for understanding the process and for assessing the effects of various parameters on the hardening process quality and performance and consequently leads to the most relevant variables to use in an eventual hardness profile prediction model.
文摘This paper presents a numerical and experimental analysis study of the temperature distribution in a cylindrical specimen heat treated by laser and quenched in ambient temperature. The cylinder studied is made of AISI-4340 steel and has a diameter of 14.5-mm and a length of 50-mm. The temperature distribution is discretized by using a three-dimensional numerical finite difference method. The temperature gradient of the transformation of the microstructure is generated by a laser source Nd-YAG 3.0-kW manipulated using a robotic arm programmed to control the movements of the laser source in space and in time. The experimental measurement of surface temperature and air temperature in the vicinity of the specimen allows us to determine the values of the absorption coefficient and the coefficient of heat transfer by convection, which are essential data for a precise numerical prediction of the case depth. Despite an unsteady dynamic regime at the level of convective and radiation heat losses, the analysis of the averaged results of the temperature sensors shows a consistency with the results of microhardness measurements. The feasibility and effectiveness of the proposed approach lead to an accurate and reliable mathematical model able to predict the temperature distribution in a cylindrical workpiece heat treated by laser.
文摘Laser heat treatment is considered to be one of best-performing manufacturing processes used currently due to its flexibility and its ability to develop parts with complex geometries. In fact, this process is able to produce reliable parts with hard, thin martensite and compressive residual stresses. This paper explores the heat treatment applied to 4340 cylindrical parts heated using a Nd: Yag 3 kW laser source. In this case, the hardness profile is correlated to process parameters such as the laser source power, the beam scanning speed and the revolution speed of the part during heating. Based on preliminary tests stipulating that each parameter is varied alone within a specific range, a systematic design of final tests is performed using Taguchi matrix. The obtained results are analyzed using ANOVA method to extract the effects, the contributions and the interaction between the factors. The results are then exploited to study the sensitivity of the case depth according the variation of the process parameters. The developed model exhibits good potential for converging towards a robust model able to predict the hardness curve and to generalize it for other dimensions of cylindrical parts.
文摘DNA is the carrier of all cellular genetic information and increasingly used in nanotechnology. The study of DNA molecule achieved <em>in vitro</em> while submitting the DNA to all chemicals agent capabilities to destabilize links hydrogen, such as pH, temperature. In fact, the DNA enveloped in the membrane cellular, so it is legitimate to study the influence of membrane undulations. In this work, we try to show that the fluctuations of the membrane can be considerate as a physics agent is also capable to destabilize links hydrogen. In this investigation, we assume that each pair base formed an angle <em>a</em><sub><em>n</em></sub> with the membrane’s surface. We have proposed a theoretical model, and we have established a relationship between the angle formed by the pair base <span style="white-space:nowrap;"><em><span style="white-space:nowrap;">θ</span></em><sub><em>eq</em></sub><em> </em></span> and <em>a</em><sub><em>n</em></sub> angle formed by the membrane and each pair base. We assume that DNA and biomembrane interact via a realistic potential of Morse type. To this end, use is made of a generalized model that extends that introduced by M. Peyrard and A. R. Bishop in the past modified by M. Zoli. This generalized model is based on the resolution of a Schr<span style="white-space:nowrap;">ö</span>dinger-like equation. The exact resolution gives the expression of the ground state, and the associated eigenvalue (energy) that equals the free energy, in the thermodynamic limit. First, we compute the denaturation temperature of DNA strands critical temperature. Second, we deduce all critical properties that mainly depend on the parameters of the model, and we quantify the effects of the membrane undulations. These undulations renormalize all physical quantities, such as harmonic stacking, melting temperature, eigenfunctions, eigenvalues and regular part of specific heat.
文摘Quality assessment and prediction becomes one of the most critical requirements for improving reliability, efficiency and safety of laser surface transformation hardening process (LSTHP). Accurate and efficient model to perform non-destructive quality estimation is an essential part of the assessment. This paper presents a structured and comprehensive approach developed to design an effective artificial neural network (ANN) based model for quality estimation and prediction in LSTHP using a commercial 3 kW Nd:Yag laser. The proposed approach examines laser hardening parameters and conditions known to have an influence on performance characteristics of hardened surface such as hardened bead width (HBW) and hardened depth (HD) and builds a quality prediction model step by step. The modeling procedure begins by examining, through a structured experimental investigations and exhaustive 3D finite element method simulation efforts, the relationships between laser hardening parameters and characteristics of hardened surface and their sensitivity to the process conditions. Using these results and various statistical tools, different quality prediction models are developed and evaluated. The results demonstrate that the ANN based assessment and prediction proposed approach can effectively lead to a consistent model able to accurately and reliably provide an appropriate prediction of hardened surface characteristics under variable hardening parameters and conditions.
文摘Laser surface hardening is a very promising hardening process for ferrous alloys where transformations occur during cooling after laser heating in the solid state. The characteristics of the hardened surface depend on the physicochemical properties of the material as well as the heating system parameters. To exploit the benefits presented by the laser hardening process, it is necessary to develop an integrated strategy to control the process parameters in order to produce desired hardened surface attributes without being forced to use the traditional and fastidious trial and error procedures. This study presents a comprehensive modelling approach for predicting the hardened surface physical and geometrical attributes. The laser surface transformation hardening of cylindrical AISI 4340 steel workpieces is modeled using the conventional regression equation method as well as artificial neural network method. The process parameters included in the study are laser power, beam scanning speed, and the workpiece rotational speed. The upper and the lower limits for each parameter are chosen considering the start of the transformation hardening and the maximum hardened zone without surface melting. The resulting models are able to predict the depths representing the maximum hardness zone, the hardness drop zone, and the overheated zone without martensite transformation. Because of its ability to model highly nonlinear problems, the ANN based model presents the best modelling results and can predict the hardness profile with good accuracy.
文摘Laser surface hardening becomes one of the most effective techniques used to enhance wear and fatigue resistance of mechanical parts. The characteristics of the hardened surface depend on the physicochemical properties of the material as well as the heating system parameters. To adequately exploit the benefits presented by the laser heating method, it is necessary to develop a comprehensive strategy to control the process parameters in order to produce desired hardened surface attributes without being forced to use the traditional and fastidious trial and error procedures. This study presents a comprehensive approach used to build a simplified model for predicting the hardness profile. A finite element method based prediction model for AISI 4340 steel is investigated. A circular shape with a Gaussian distribution is used for modeling the laser heat source. COMSOL MULTIPHYSICS software is used to solve the heat transfer equations, estimate the temperature distribution in the part and consequently predict the hardness profile. A commercial 3 kW Nd:Yag laser system is combined to a structured experimental design and confirmed statistical analysis tools for conducting the experimental calibration and validation of the model. The results reveal that the model can effectively lead to a consistent and accurate prediction of the hardness profile characteristics under variable hardening parameters and conditions. The results show great concordance between predicted and measured values for the dimensions of hardened and melted zones.