期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Classification of Cybersecurity Threats, Vulnerabilities and Countermeasures in Database Systems
1
作者 Mohammed Amin Almaiah Leen Mohammad Saqr +3 位作者 Leen Ahmad Al-Rawwash Layan Ahmed Altellawi Romel Al-Ali omar almomani 《Computers, Materials & Continua》 SCIE EI 2024年第11期3189-3220,共32页
Database systems have consistently been prime targets for cyber-attacks and threats due to the critical nature of the data they store.Despite the increasing reliance on database management systems,this field continues... Database systems have consistently been prime targets for cyber-attacks and threats due to the critical nature of the data they store.Despite the increasing reliance on database management systems,this field continues to face numerous cyber-attacks.Database management systems serve as the foundation of any information system or application.Any cyber-attack can result in significant damage to the database system and loss of sensitive data.Consequently,cyber risk classifications and assessments play a crucial role in risk management and establish an essential framework for identifying and responding to cyber threats.Risk assessment aids in understanding the impact of cyber threats and developing appropriate security controls to mitigate risks.The primary objective of this study is to conduct a comprehensive analysis of cyber risks in database management systems,including classifying threats,vulnerabilities,impacts,and countermeasures.This classification helps to identify suitable security controls to mitigate cyber risks for each type of threat.Additionally,this research aims to explore technical countermeasures to protect database systems from cyber threats.This study employs the content analysis method to collect,analyze,and classify data in terms of types of threats,vulnerabilities,and countermeasures.The results indicate that SQL injection attacks and Denial of Service(DoS)attacks were the most prevalent technical threats in database systems,each accounting for 9%of incidents.Vulnerable audit trails,intrusion attempts,and ransomware attacks were classified as the second level of technical threats in database systems,comprising 7%and 5%of incidents,respectively.Furthermore,the findings reveal that insider threats were the most common non-technical threats in database systems,accounting for 5%of incidents.Moreover,the results indicate that weak authentication,unpatched databases,weak audit trails,and multiple usage of an account were the most common technical vulnerabilities in database systems,each accounting for 9%of vulnerabilities.Additionally,software bugs,insecure coding practices,weak security controls,insecure networks,password misuse,weak encryption practices,and weak data masking were classified as the second level of security vulnerabilities in database systems,each accounting for 4%of vulnerabilities.The findings from this work can assist organizations in understanding the types of cyber threats and developing robust strategies against cyber-attacks. 展开更多
关键词 Cyber threats database systems cyber risk assessment VULNERABILITIES COUNTERMEASURES
下载PDF
A Hybrid Model Using Bio-Inspired Metaheuristic Algorithms for Network Intrusion Detection System 被引量:2
2
作者 omar almomani 《Computers, Materials & Continua》 SCIE EI 2021年第7期409-429,共21页
Network Intrusion Detection System(IDS)aims to maintain computer network security by detecting several forms of attacks and unauthorized uses of applications which often can not be detected by firewalls.The features s... Network Intrusion Detection System(IDS)aims to maintain computer network security by detecting several forms of attacks and unauthorized uses of applications which often can not be detected by firewalls.The features selection approach plays an important role in constructing effective network IDS.Various bio-inspired metaheuristic algorithms used to reduce features to classify network traffic as abnormal or normal traffic within a shorter duration and showing more accuracy.Therefore,this paper aims to propose a hybrid model for network IDS based on hybridization bio-inspired metaheuristic algorithms to detect the generic attack.The proposed model has two objectives;The first one is to reduce the number of selected features for Network IDS.This objective was met through the hybridization of bioinspired metaheuristic algorithms with each other in a hybrid model.The algorithms used in this paper are particle swarm optimization(PSO),multiverse optimizer(MVO),grey wolf optimizer(GWO),moth-flame optimization(MFO),whale optimization algorithm(WOA),firefly algorithm(FFA),and bat algorithm(BAT).The second objective is to detect the generic attack using machine learning classifiers.This objective was met through employing the support vector machine(SVM),C4.5(J48)decision tree,and random forest(RF)classifiers.UNSW-NB15 dataset used for assessing the effectiveness of the proposed hybrid model.UNSW-NB15 dataset has nine attacks type.The generic attack is the highest among them.Therefore,the proposed model aims to identify generic attacks.My data showed that J48 is the best classifier compared to SVM and RF for the time needed to build the model.In terms of features reduction for the classification,my data show that the MFO-WOA and FFA-GWO models reduce the features to 15 features with close accuracy,sensitivity and F-measure of all features,whereas MVO-BAT model reduces features to 24 features with the same accuracy,sensitivity and F-measure of all features for all classifiers. 展开更多
关键词 IDS metaheuristic algorithms PSO MVO GWO MFO WOA FFA BAT SVM J48 RF UNSW-NB15 dataset
下载PDF
Ensemble-Based Approach for Efficient Intrusion Detection in Network Traffic 被引量:2
3
作者 Ammar almomani Iman Akour +5 位作者 Ahmed M.Manasrah omar almomani Mohammad Alauthman Esra’a Abdullah Amaal Al Shwait Razan Al Sharaa 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期2499-2517,共19页
The exponential growth of Internet and network usage has neces-sitated heightened security measures to protect against data and network breaches.Intrusions,executed through network packets,pose a significant challenge... The exponential growth of Internet and network usage has neces-sitated heightened security measures to protect against data and network breaches.Intrusions,executed through network packets,pose a significant challenge for firewalls to detect and prevent due to the similarity between legit-imate and intrusion traffic.The vast network traffic volume also complicates most network monitoring systems and algorithms.Several intrusion detection methods have been proposed,with machine learning techniques regarded as promising for dealing with these incidents.This study presents an Intrusion Detection System Based on Stacking Ensemble Learning base(Random For-est,Decision Tree,and k-Nearest-Neighbors).The proposed system employs pre-processing techniques to enhance classification efficiency and integrates seven machine learning algorithms.The stacking ensemble technique increases performance by incorporating three base models(Random Forest,Decision Tree,and k-Nearest-Neighbors)and a meta-model represented by the Logistic Regression algorithm.Evaluated using the UNSW-NB15 dataset,the pro-posed IDS gained an accuracy of 96.16%in the training phase and 97.95%in the testing phase,with precision of 97.78%,and 98.40%for taring and testing,respectively.The obtained results demonstrate improvements in other measurement criteria. 展开更多
关键词 Intrusion detection system(IDS) machine learning techniques stacking ensemble random forest decision tree k-nearest-neighbor
下载PDF
Bio-inspired Hybrid Feature Selection Model for Intrusion Detection
4
作者 Adel Hamdan Mohammad Tariq Alwada’n +2 位作者 omar almomani Sami Smadi Nidhal Elomari 《Computers, Materials & Continua》 SCIE EI 2022年第10期133-150,共18页
Intrusion detection is a serious and complex problem.Undoubtedly due to a large number of attacks around the world,the concept of intrusion detection has become very important.This research proposes a multilayer bioin... Intrusion detection is a serious and complex problem.Undoubtedly due to a large number of attacks around the world,the concept of intrusion detection has become very important.This research proposes a multilayer bioinspired feature selection model for intrusion detection using an optimized genetic algorithm.Furthermore,the proposed multilayer model consists of two layers(layers 1 and 2).At layer 1,three algorithms are used for the feature selection.The algorithms used are Particle Swarm Optimization(PSO),Grey Wolf Optimization(GWO),and Firefly Optimization Algorithm(FFA).At the end of layer 1,a priority value will be assigned for each feature set.At layer 2 of the proposed model,the Optimized Genetic Algorithm(GA)is used to select one feature set based on the priority value.Modifications are done on standard GA to perform optimization and to fit the proposed model.The Optimized GA is used in the training phase to assign a priority value for each feature set.Also,the priority values are categorized into three categories:high,medium,and low.Besides,the Optimized GA is used in the testing phase to select a feature set based on its priority.The feature set with a high priority will be given a high priority to be selected.At the end of phase 2,an update for feature set priority may occur based on the selected features priority and the calculated F-Measures.The proposed model can learn and modify feature sets priority,which will be reflected in selecting features.For evaluation purposes,two well-known datasets are used in these experiments.The first dataset is UNSW-NB15,the other dataset is the NSL-KDD.Several evaluation criteria are used,such as precision,recall,and F-Measure.The experiments in this research suggest that the proposed model has a powerful and promising mechanism for the intrusion detection system. 展开更多
关键词 Intrusion detection Machine learning Optimized Genetic Algorithm(GA) Particle Swarm Optimization algorithms(PSO) Grey Wolf Optimization algorithms(GWO) FireFly Optimization Algorithms(FFA) Genetic Algorithm(GA)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部