Glacier disasters occur frequently in alpine regions around the world,but the current conventional geological disaster measurement technology cannot be directly used for glacier disaster measurement.Hence,in this stud...Glacier disasters occur frequently in alpine regions around the world,but the current conventional geological disaster measurement technology cannot be directly used for glacier disaster measurement.Hence,in this study,a distributed multi-sensor measurement system for glacier deformation was established by integrating piezoelectric sensing,coded sensing,attitude sensing technology and wireless communication technology.The traditional Modbus protocol was optimized to solve the problem of data identification confusion of different acquisition nodes.Through indoor wireless transmission,adaptive performance analysis,error measurement experiment and landslide simulation experiment,the performance of the measurement system was analyzed and evaluated.Using unmanned aerial vehicle technology,the reliability and effectiveness of the measurement system were verified on the site of Galongla glacier in southeastern Tibet,China.The results show that the mean absolute percentage errors were only 1.13%and 2.09%for the displacement and temperature,respectively.The distributed glacier deformation real-time measurement system provides a new means for the assessment of the development process of glacier disasters and disaster prevention and mitigation.展开更多
文摘目的从轮状病毒阳性的牛粪便标本中,分离出一株G6P[1]型牛轮状病毒(Bovine Rotavirus,BRV),对其进行培养和鉴定。方法用PBS溶液重悬粪便标本并离心,将其上清过滤除菌和胰酶处理后,利用MA104细胞进行分离培养;通过逆转录-聚合酶链式反应(Reverse Transcription-polymerase Chain Reaction,RT-PCR)对样本VP4和VP7基因进行扩增和测序,与GenBank上的参考序列进行同源性分析,构建进化树,分析确定其G/P基因分型。通过聚丙烯酰胺凝胶电泳法(Polyacrylamine Gel Electrophoresis,PAGE)、噬斑实验和电镜(Transmission Electron Microscope,TEM)等技术对分离到的病毒进行鉴定和纯化。绘制病毒生长动力学曲线。结果分离培养了1株BRV毒株,将其命名BLL。VP7和VP4基因测序结果显示此毒株为G6P[1]型轮状病毒。PAGE胶结果显示分离株电泳型为长型,条带呈现A组轮状病毒排列电泳图谱;通过噬斑实验将毒株进行了纯化。电镜检测到典型的轮状病毒颗粒。病毒生长动力学曲线可发现病毒在感染后6 h已经开始复制。结论本研究成功分离到G6P[1]型牛型轮状病毒,为研究G6P[1]型轮状病毒的病原学特征提供实验基础和技术参考。
基金funded by National Key R&D Program of China((Nos.2022YFC3003403 and 2018YFC1505203)Key Research and Development Program of Tibet Autonomous Region(XZ202301ZY0039G)+1 种基金Natural Science Foundation of Hebei Province(No.F2021201031)Geological Survey Project of China Geological Survey(No.DD20221747)。
文摘Glacier disasters occur frequently in alpine regions around the world,but the current conventional geological disaster measurement technology cannot be directly used for glacier disaster measurement.Hence,in this study,a distributed multi-sensor measurement system for glacier deformation was established by integrating piezoelectric sensing,coded sensing,attitude sensing technology and wireless communication technology.The traditional Modbus protocol was optimized to solve the problem of data identification confusion of different acquisition nodes.Through indoor wireless transmission,adaptive performance analysis,error measurement experiment and landslide simulation experiment,the performance of the measurement system was analyzed and evaluated.Using unmanned aerial vehicle technology,the reliability and effectiveness of the measurement system were verified on the site of Galongla glacier in southeastern Tibet,China.The results show that the mean absolute percentage errors were only 1.13%and 2.09%for the displacement and temperature,respectively.The distributed glacier deformation real-time measurement system provides a new means for the assessment of the development process of glacier disasters and disaster prevention and mitigation.