Mordenite with different Si/Al ratios were synthesized by solvent-free method and used for dimethyl ether(DME)carbonylation reaction.The influence of Si/Al ratio in the feedstock on the structure,porosity and acid sit...Mordenite with different Si/Al ratios were synthesized by solvent-free method and used for dimethyl ether(DME)carbonylation reaction.The influence of Si/Al ratio in the feedstock on the structure,porosity and acid sites were systematically investigated.The characterization results showed that with the increase of Si/Al ratio in the feedstock,part of silicon species fail to enter the skeleton and the specific surface area and pore volume of the samples decreased.The amount of weak acid and medium strong acid decreased alongside with the increasing Si/Al ratio,and the amount of strong acid slightly increased.The Al atoms preferentially enter the strong acid sites in the 8 member ring(MR)channel during the crystallization process.The high Si/Al ratio sample had more acid sites located in the 8 MR channel,leading to more active sites for carbonylation reaction and higher catalytic performance.Appropriately increasing the Si/Al ratio was beneficial for the improvement of carbonylation reaction activity over the mordenite(MOR)catalyst.展开更多
Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we...Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we present extensive VLC channel measurement campaigns in indoor environments,i.e.,an office and a corridor.Based on the measured data,the large-scale fading characteristics and multipath-related characteristics,including omnidirectional optical path loss(OPL),K-factor,power angular spectrum(PAS),angle spread(AS),and clustering characteristics,are analyzed and modeled through a statistical method.Based on the extracted statistics of the above-mentioned channel characteristics,we propose a statistical spatial channel model(SSCM)capable of modeling multipath in the spatial domain.Furthermore,the simulated statistics of the proposed model are compared with the measured statistics.For instance,in the office,the simulated path loss exponent(PLE)and the measured PLE are 1.96and 1.97,respectively.And,the simulated medians of AS and measured medians of AS are 25.94°and 24.84°,respectively.Generally,the fact that the simulated results fit well with measured results has demonstrated the accuracy of our SSCM.展开更多
With a focus on the global tension between water resources and energy,the use of water-fertilizer integration technology in sprinkler irrigation has seen a rise.However,achieving efficient and effective fertilizer app...With a focus on the global tension between water resources and energy,the use of water-fertilizer integration technology in sprinkler irrigation has seen a rise.However,achieving efficient and effective fertilizer application remains a significant challenge.This study delves into the interaction mechanism between droplets and foliage during sprinkler fertigation,as well as discusses the application of water-saving and energy-saving irrigation methods in agriculture to address water crises and propel agricultural modernization.This study highlights two main aspects of this issue,that is,the droplet and foliage impact process,and the droplet and foliage dynamic interaction including foliar interception,leaf absorption,and leaf burning.Major challenges,such as inefficiencies in foliar interception and uncertainties in fertilization,have been identified,calling for further investigation into these areas.Moreover,perspectives to promote fertilization technology are proposed,including research on the dynamic impact of fertigation droplets on foliage,the development of universal models for leaf fertilizer retention,and the determination of critical fertigation concentrations under varying conditions to prevent leaf burning.This comprehensive review aims to provide a theoretical basis for establishing an integrated fertigation system for sprinkler irrigation and foster innovation in water-fertilizer integration technology.展开更多
Jiama,with more than 11 Mt of copper metal,is the largest porphyry-skarn copper system in the Gangdese metallogenic belt,Tibet,China,creating ideal conditions for deciphering the origin of porphyry ores in a collision...Jiama,with more than 11 Mt of copper metal,is the largest porphyry-skarn copper system in the Gangdese metallogenic belt,Tibet,China,creating ideal conditions for deciphering the origin of porphyry ores in a collision setting.Despite massive studies of the geology,chronology,petrogenesis,and ore-related fluids and their sources in Jiama,there is a lack of systematic summaries and reviews of this system.In contrast to traditional porphyry copper systems in a subduction setting,recent studies and exploration suggest that the Jiama deposit includes porphyry-type Mo-Cu,skarn-type Cu polymetallic,vein-type Au and manto orebodies.This paper reviews the latest studies on the geology,chronology,petrogenesis,fluid inclusions,and isotopic geochemistry(hydrogen,oxygen,sulfur,and lead)of the Jiama deposit.Accordingly,a multi-center complex mineralization model was constructed,indicating that multi-phase intrusions from the same magma reservoir can form multiple hydrothermal centers.These centers are mutually independent and form various orebodies or are superimposed on each other and form thick,high-grade orebodies.Finally,a new comprehensive exploration model was established for the Jiama porphyry copper system.Both models established in this study help to refine the theories on continental-collision metallogeny and porphyry copper systems.展开更多
Terahertz(THz)communication has been envisioned as a key enabling technology for sixthgeneration(6G).In this paper,we present an extensive THz channel measurement campaign for 6G wireless communications from 220 GHz t...Terahertz(THz)communication has been envisioned as a key enabling technology for sixthgeneration(6G).In this paper,we present an extensive THz channel measurement campaign for 6G wireless communications from 220 GHz to 330 GHz.Furthermore,the path loss is analyzed and modeled by using two single-frequency path loss models and a multiplefrequencies path loss model.It is found that at most frequency points,the measured path loss is larger than that in the free space.But at around 310 GHz,the propagation attenuation is relatively weaker compared to that in the free space.Also,the frequency dependence of path loss is observed and the frequency exponent of the multiple-frequencies path loss model is 2.1.Moreover,the cellular performance of THz communication systems is investigated by using the obtained path loss model.Simulation results indicate that the current inter-site distance(ISD)for the indoor scenario is too small for THz communications.Furthermore,the tremendous capacity gain can be obtained by using THz bands compared to using microwave bands and millimeter wave bands.Generally,this work can give an insight into the design and optimization of THz communication systems for 6G.展开更多
Cluster-based channel model is the main stream of fifth generation mobile communications, thus the accuracy of clustering algorithm is important. Traditional Gaussian mixture model (GMM) does not consider the power in...Cluster-based channel model is the main stream of fifth generation mobile communications, thus the accuracy of clustering algorithm is important. Traditional Gaussian mixture model (GMM) does not consider the power information which is important for the channel multipath clustering. In this paper, a normalized power weighted GMM (PGMM) is introduced to model the channel multipath components (MPCs). With MPC power as a weighted factor, the PGMM can fit the MPCs in accordance with the cluster-based channel models. Firstly, expectation maximization (EM) algorithm is employed to optimize the PGMM parameters. Then, to further increase the searching ability of EM and choose the optimal number of components without resort to cross-validation, the variational Bayesian (VB) inference is employed. Finally, 28 GHz indoor channel measurement data is used to demonstrate the effectiveness of the PGMM clustering algorithm.展开更多
Three dimensional(3D)Multiple Input and Multiple Output(MIMO)is one of the most promising techniques for the 5th generation(5G)mobile communication system.To support its research,the property of elevation angle in 3D ...Three dimensional(3D)Multiple Input and Multiple Output(MIMO)is one of the most promising techniques for the 5th generation(5G)mobile communication system.To support its research,the property of elevation angle in 3D channel model should be accurately modeled.Conventionally,3D channel is modeled with an assumption that the mean elevation angle of multipaths is coincided with the line-of-sight(LOS)direction.In order to investigate its authenticity and give the reliable 3D channel model,extensive 3D multiple antenna field channel measurements with 100 MHz bandwidth are conducted in three typical scenarios,including outdoor to indoor(O2I),urban microcell(UMi)and urban macrocell(UMa).The statistical characteristics and parameters are extracted and analyzed based on the measurement data.It is found that the assumption holds in the LOS condition.However,for non-line-of-sight(NLOS)condition,a difference exists between the mean elevation angle and the direction connecting transmitter and receiver,which is defined as the elevation angle offset.Then,the eigenvalue distribution and capacity are compared between the reconstructed 3D channels with and without elevation angle offset.Results show that the performance of 3D channel with angle offset fits the measurement data better whereas that without angle offset is underestimated.展开更多
Various virulence-associated genes or pathogenicity island are responsible for determining the pathogenicity of Escherichia coli strains. However, the correlation of the number and combination patterns of virulence-as...Various virulence-associated genes or pathogenicity island are responsible for determining the pathogenicity of Escherichia coli strains. However, the correlation of the number and combination patterns of virulence-associated genes in Escherichia coli strains with their pathogenicity remains largely unknown. In this work, 581 chicken Escherichia coli strains were isolated from 1045 liver samples of dead chickens from 50 chicken farms at four provinces in China during 2007-2012. Based on the pathogenic test of SPF chickens, 320 chickens pathogenic Escherichia coli isolates were identified as highly (n = 193), intermediate (n = 98) and low pathogenic (n = 29) strains, respectively. Furthermore, the number of virulence genes in the 320 chicken pathogenic and 50 non-pathogenic Escherichia coli strains was examined. Our results reveal that thirteen virulence genes in Escherichia coli strains were detected, and all strains carried at least two or more than two virulence-associated genes. This study also suggests that highly pathogenic E. coli strains simultaneously carried at least 8 to13 virulence genes while intermediate pathogenic strains carried at least 5 to 8 virulence genes. The number of virulence-associated genes detected in highly pathogenic strains showed there were more significant differences than that in low pathogenic strains (P irp2, fyuA, and colV in high pathogenic strains was significantly higher than that in low and non-pathogenic strains (P irp2, fyuA, iucA, iucD, iutA, papC, iss, tsh, and colV were more often detected in highly and intermediate pathogenic E. coli strains. Taken together, our results provide evidences demonstrating that the pathogenicity of Escherichia coli strains is closely associated with the number and combination patterns of virulence-associated genes.展开更多
随着第六代移动通信(the six generation,6G)的前沿研究在全球范围内陆续开展,工业界和学术界提出了多种新技术、新频段和新应用,如通信感知一体化(integrated sensing and communication,ISAC)、超大规模多输入多输出天线阵列(extra-la...随着第六代移动通信(the six generation,6G)的前沿研究在全球范围内陆续开展,工业界和学术界提出了多种新技术、新频段和新应用,如通信感知一体化(integrated sensing and communication,ISAC)、超大规模多输入多输出天线阵列(extra-large-scale massive multiple-input multiple-output,XLMIMO)、多频段通信、可重构智能超表面(reconfigurable intelligent surface,RIS)和空-天-地-海通信等,旨在提供更高速率、更低时延、更广覆盖的高可靠移动通信服务.信道是移动通信系统收发端之间信号承载的媒介,其深入的传播特性发现与精确的建模对6G系统的研发、评估和优化至关重要.因此本文首先回顾了第一代到第五代移动通信的信道研究发展趋势,指出了多频段、多场景和多种新技术趋势下6G信道研究面临的挑战.随后,详细总结了6G信道新特性研究的最新进展,包括ISAC信道的共享性、XL-MIMO信道的近场和空间非平稳性、RIS信道的级联特性,以及多频段信道频率依赖性等.然后,本文提出了一种面向6G标准的扩展几何统计性信道模型,将所发现的信道新特性纳入统一建模框架,所提模型后向兼容主流的高精度5G标准模型,便于代际更迭的信道仿真器实现.最后,指出了面向6G演进的信道特性与建模方法研究有待深入的问题,并聚焦6G网络自治化的未来愿景,展望了一种基于环境感知重构和人工智能预测技术的信道数字孪生新范式.展开更多
Terahertz(THz)channel propagation characteristics are vital for the design,evaluation,and optimization of THz communication systems.Moreover,reflection plays a significant role in channel propagation.In this correspon...Terahertz(THz)channel propagation characteristics are vital for the design,evaluation,and optimization of THz communication systems.Moreover,reflection plays a significant role in channel propagation.In this correspondence,the reflection coefficients of the THz channel are researched based on extensive measurement campaigns.展开更多
With the commercialization of fifth generation networks worldwide,research into sixth generation(6G)networks has been launched to meet the demands for high data rates and low latency for future services.A wireless pro...With the commercialization of fifth generation networks worldwide,research into sixth generation(6G)networks has been launched to meet the demands for high data rates and low latency for future services.A wireless propagation channel is the transmission medium to transfer information between the transmitter and the receiver.Moreover,channel properties determine the ultimate performance limit of wireless communication systems.Thus,conducting channel research is a prerequisite to designing 6G wireless communication systems.In this paper,we first introduce several emerging technologies and applications for 6G,such as terahertz communication,industrial Internet of Things,space-air-ground integrated network,and machine learning,and point out the developing trends of 6G channel models.Then,we give a review of channel measurements and models for the technologies and applications.Finally,the outlook for 6G channel measurements and models is discussed.展开更多
This paper presents an empirical study of the uplink and downlink azimuth angle of arrival(AoA)in an urban micro(UMi)scenario at 28 GHz.At present,most UMi measurements are conducted in the downlink and then the uplin...This paper presents an empirical study of the uplink and downlink azimuth angle of arrival(AoA)in an urban micro(UMi)scenario at 28 GHz.At present,most UMi measurements are conducted in the downlink and then the uplink situation is inferred assuming channel reciprocity.Although the channel correlation coefficient of the uplink and downlink can be as high as 0.8,this does not mean that they are the same.Only a real uplink measurement can accurately describe its channel conditions,and this is what this study does.A receiver equipped with a rotatable horn antenna is mounted at the base station and the user terminal,respectively,in simulating the uplink and downlink.To improve the angular resolution,we extract the multipath components(MPCs)using the space-alternating generalized expectation-maximization algorithm.Also,a spatial lobe approach is used to cluster the MPCs in the power angular spectrum.By matching MPCs with objects in the environment,we find that direct propagation and first-order reflections are dominant in line-of-sight and non-line-of-sight cases.By comparing our measurement with those in standard channel models,we verify that the AoA of clusters follows a Gaussian distribution in the uplink and downlink.In addition,a two-dimensional Gaussian distribution for ray AoA and power is established to reflect their correlation.展开更多
Jet breakup and dispersion from impact sprinkler are mainly influenced by the configurations of nozzle and dispersion device.Based on the structure,different types of nozzles were designed and tested with a pointed ti...Jet breakup and dispersion from impact sprinkler are mainly influenced by the configurations of nozzle and dispersion device.Based on the structure,different types of nozzles were designed and tested with a pointed tip dispersion device under low pressure conditions.Experiments were performed using High-Speed Photographic technique,and Matlab computation program was established and applied to determine the initial jet breakup length and angle of dispersion from the nozzles.The sprinkler range decreased with the increase in diameter of nozzle,and the largest range of 15.1 m was produced from sprinkler with 6 mm nozzle size under a pressure of 150 kPa.The angle of dispersion decreased with the increase of jet velocity,the spray coverage from sprinkler with 6 mm nozzle size was 1478 mm under 150 kPa,and was not statistically different when the pressure was increased.A new range formula was established for sprinkler with dispersion device through curve fitting of the parameters of initial jet breakup length,angle of dispersion,nozzle size and working pressure.The new formula was reliable for calculating range with a relative error less than 3%.Since the formula is based on the angle of dispersion,it could be useful to estimate uniformity of water distribution in sprinkler irrigated fields.展开更多
One way to adapt to the trend towards low-energy and to improve the hydraulic performance of the impact sprinkler under a low pressure condition is by means of a fixed water dispersion device.A fixed dispersion device...One way to adapt to the trend towards low-energy and to improve the hydraulic performance of the impact sprinkler under a low pressure condition is by means of a fixed water dispersion device.A fixed dispersion device disperses jet flow from the nozzle continuously.The shape of the tip,impact angle(θ),diameter(D),and depth in the jet flow(d)have significant influence on the hydraulic performance.In this study,the hydraulic performance characteristics of impact sprinkler as affected by the fixed water dispersion device were studied under indoor conditions.Radial water distributions from the sprinkler were obtained by experiments for the fixed water dispersion devices.MATLAB was used to transform the radial data into net data,and the uniformities were simulated in a square layout from 1 to 2 times the range(R).The droplet size distributions from the fixed water dispersion devices were measured by a laser precipitation monitor(LPM).Results showed that the range increased with the increase of pressure,and the sprinkler with type C_(2) produced a rectangular-shaped water distribution pattern,while the range was maintained.A maximum uniformity of 71.56%,75.56%,77.23%,73.32%,78.88%and 86.67%was found for types A1,B1,C1,A2,B2,and C_(2),respectively under a pressure of 200 kPa.The uniformity from the sprinkler using type C_(2) surpassed 80%,while type C1 fell below.Droplet sizes from type C_(2) was best,and the mean droplet diameter decreased with the increase of pressure.Hence,type C_(2) can be selected for further optimization of the design features to improve the hydraulic performance of the impact sprinkler under low pressure conditions.展开更多
Water saving is an essential part of sprinkler irrigation owing to the impact of climate change and rising energy costs.This review highlights the technologies that are emerging in sprinkler irrigation to optimize cro...Water saving is an essential part of sprinkler irrigation owing to the impact of climate change and rising energy costs.This review highlights the technologies that are emerging in sprinkler irrigation to optimize crop production.While there have been notable advances in irrigation,the continued progress has occurred by the combination of current status with the postulation of new ideas such as conversion of high-pressure sprinkler to low-pressure ones,incorporation of smart controllers in sprinkler irrigation systems.To enhance the adoption of these technologies,research on the dispersion device is needed to improve the performance of impact sprinklers to efficiently operate at low-pressure conditions.It is also important to study how water savings estimates based on water use,irrigated area,longevity of saving,and level of wasteful irrigation prior to the retrofit obtained from field trials can be extrapolated to other areas with different conditions.Research in the development of optimized method for irrigation scheduling is necessary.This review emphasizes that the status of technologies should be considered a continuum,building on earlier knowledge and progress,and hopefully leading toward optimized crop production in sprinkler irrigated areas.展开更多
基金supported by China National Natural Science Foundation(22008260,21908123)。
文摘Mordenite with different Si/Al ratios were synthesized by solvent-free method and used for dimethyl ether(DME)carbonylation reaction.The influence of Si/Al ratio in the feedstock on the structure,porosity and acid sites were systematically investigated.The characterization results showed that with the increase of Si/Al ratio in the feedstock,part of silicon species fail to enter the skeleton and the specific surface area and pore volume of the samples decreased.The amount of weak acid and medium strong acid decreased alongside with the increasing Si/Al ratio,and the amount of strong acid slightly increased.The Al atoms preferentially enter the strong acid sites in the 8 member ring(MR)channel during the crystallization process.The high Si/Al ratio sample had more acid sites located in the 8 MR channel,leading to more active sites for carbonylation reaction and higher catalytic performance.Appropriately increasing the Si/Al ratio was beneficial for the improvement of carbonylation reaction activity over the mordenite(MOR)catalyst.
基金supported by the National Science Fund for Distinguished Young Scholars(No.61925102)the National Natural Science Foundation of China(No.62201086,92167202,62201087,62101069)BUPT-CMCC Joint Innovation Center,and State Key Laboratory of IPOC(BUPT)(No.IPOC2023ZT02),China。
文摘Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we present extensive VLC channel measurement campaigns in indoor environments,i.e.,an office and a corridor.Based on the measured data,the large-scale fading characteristics and multipath-related characteristics,including omnidirectional optical path loss(OPL),K-factor,power angular spectrum(PAS),angle spread(AS),and clustering characteristics,are analyzed and modeled through a statistical method.Based on the extracted statistics of the above-mentioned channel characteristics,we propose a statistical spatial channel model(SSCM)capable of modeling multipath in the spatial domain.Furthermore,the simulated statistics of the proposed model are compared with the measured statistics.For instance,in the office,the simulated path loss exponent(PLE)and the measured PLE are 1.96and 1.97,respectively.And,the simulated medians of AS and measured medians of AS are 25.94°and 24.84°,respectively.Generally,the fact that the simulated results fit well with measured results has demonstrated the accuracy of our SSCM.
基金supported by the National Natural Science Foundation of China(Grant No.51939005)the Key Research and Development Program of Jiangsu Province(Grant No.BE2021340).
文摘With a focus on the global tension between water resources and energy,the use of water-fertilizer integration technology in sprinkler irrigation has seen a rise.However,achieving efficient and effective fertilizer application remains a significant challenge.This study delves into the interaction mechanism between droplets and foliage during sprinkler fertigation,as well as discusses the application of water-saving and energy-saving irrigation methods in agriculture to address water crises and propel agricultural modernization.This study highlights two main aspects of this issue,that is,the droplet and foliage impact process,and the droplet and foliage dynamic interaction including foliar interception,leaf absorption,and leaf burning.Major challenges,such as inefficiencies in foliar interception and uncertainties in fertilization,have been identified,calling for further investigation into these areas.Moreover,perspectives to promote fertilization technology are proposed,including research on the dynamic impact of fertigation droplets on foliage,the development of universal models for leaf fertilizer retention,and the determination of critical fertigation concentrations under varying conditions to prevent leaf burning.This comprehensive review aims to provide a theoretical basis for establishing an integrated fertigation system for sprinkler irrigation and foster innovation in water-fertilizer integration technology.
基金supported by the National Key Research and Development Program of China (2022YFC2905001)the National Natural Science Foundation of China (42272093,42230813)+1 种基金China Scholarship Council projectthe Geological Survey project (DD20230054)
文摘Jiama,with more than 11 Mt of copper metal,is the largest porphyry-skarn copper system in the Gangdese metallogenic belt,Tibet,China,creating ideal conditions for deciphering the origin of porphyry ores in a collision setting.Despite massive studies of the geology,chronology,petrogenesis,and ore-related fluids and their sources in Jiama,there is a lack of systematic summaries and reviews of this system.In contrast to traditional porphyry copper systems in a subduction setting,recent studies and exploration suggest that the Jiama deposit includes porphyry-type Mo-Cu,skarn-type Cu polymetallic,vein-type Au and manto orebodies.This paper reviews the latest studies on the geology,chronology,petrogenesis,fluid inclusions,and isotopic geochemistry(hydrogen,oxygen,sulfur,and lead)of the Jiama deposit.Accordingly,a multi-center complex mineralization model was constructed,indicating that multi-phase intrusions from the same magma reservoir can form multiple hydrothermal centers.These centers are mutually independent and form various orebodies or are superimposed on each other and form thick,high-grade orebodies.Finally,a new comprehensive exploration model was established for the Jiama porphyry copper system.Both models established in this study help to refine the theories on continental-collision metallogeny and porphyry copper systems.
基金supported by the National Science Fund for Distinguished Young Scholars(No.61925102)the National Key R&D Program of China(No.2020YFB1805002)the Key Project of State Key Lab of Networking and Switching Technology(No.NST20180105).
文摘Terahertz(THz)communication has been envisioned as a key enabling technology for sixthgeneration(6G).In this paper,we present an extensive THz channel measurement campaign for 6G wireless communications from 220 GHz to 330 GHz.Furthermore,the path loss is analyzed and modeled by using two single-frequency path loss models and a multiplefrequencies path loss model.It is found that at most frequency points,the measured path loss is larger than that in the free space.But at around 310 GHz,the propagation attenuation is relatively weaker compared to that in the free space.Also,the frequency dependence of path loss is observed and the frequency exponent of the multiple-frequencies path loss model is 2.1.Moreover,the cellular performance of THz communication systems is investigated by using the obtained path loss model.Simulation results indicate that the current inter-site distance(ISD)for the indoor scenario is too small for THz communications.Furthermore,the tremendous capacity gain can be obtained by using THz bands compared to using microwave bands and millimeter wave bands.Generally,this work can give an insight into the design and optimization of THz communication systems for 6G.
基金supported by National Science and Technology Major Program of the Ministry of Science and Technology (No.2018ZX03001031)Key program of Beijing Municipal Natural Science Foundation (No. L172030)+2 种基金Beijing Municipal Science & Technology Commission Project (No. Z171100005217001)Key Project of State Key Lab of Networking and Switching Technology (NST20170205)National Key Technology Research and Development Program of the Ministry of Science and Technology of China (NO. 2012BAF14B01)
文摘Cluster-based channel model is the main stream of fifth generation mobile communications, thus the accuracy of clustering algorithm is important. Traditional Gaussian mixture model (GMM) does not consider the power information which is important for the channel multipath clustering. In this paper, a normalized power weighted GMM (PGMM) is introduced to model the channel multipath components (MPCs). With MPC power as a weighted factor, the PGMM can fit the MPCs in accordance with the cluster-based channel models. Firstly, expectation maximization (EM) algorithm is employed to optimize the PGMM parameters. Then, to further increase the searching ability of EM and choose the optimal number of components without resort to cross-validation, the variational Bayesian (VB) inference is employed. Finally, 28 GHz indoor channel measurement data is used to demonstrate the effectiveness of the PGMM clustering algorithm.
基金supported by National Science and Technology Major Program of the Ministry of Science and Technology (No. 2018ZX03001031)Key program of Beijing Municipal Natural Science Foundation (No. L172030)+1 种基金Beijing Municipal Science and Technology Commission Project (No. Z181100003218007)the Key Project of State Key Lab of Networking and Switching Technology (No. NST20180105)
文摘Three dimensional(3D)Multiple Input and Multiple Output(MIMO)is one of the most promising techniques for the 5th generation(5G)mobile communication system.To support its research,the property of elevation angle in 3D channel model should be accurately modeled.Conventionally,3D channel is modeled with an assumption that the mean elevation angle of multipaths is coincided with the line-of-sight(LOS)direction.In order to investigate its authenticity and give the reliable 3D channel model,extensive 3D multiple antenna field channel measurements with 100 MHz bandwidth are conducted in three typical scenarios,including outdoor to indoor(O2I),urban microcell(UMi)and urban macrocell(UMa).The statistical characteristics and parameters are extracted and analyzed based on the measurement data.It is found that the assumption holds in the LOS condition.However,for non-line-of-sight(NLOS)condition,a difference exists between the mean elevation angle and the direction connecting transmitter and receiver,which is defined as the elevation angle offset.Then,the eigenvalue distribution and capacity are compared between the reconstructed 3D channels with and without elevation angle offset.Results show that the performance of 3D channel with angle offset fits the measurement data better whereas that without angle offset is underestimated.
文摘Various virulence-associated genes or pathogenicity island are responsible for determining the pathogenicity of Escherichia coli strains. However, the correlation of the number and combination patterns of virulence-associated genes in Escherichia coli strains with their pathogenicity remains largely unknown. In this work, 581 chicken Escherichia coli strains were isolated from 1045 liver samples of dead chickens from 50 chicken farms at four provinces in China during 2007-2012. Based on the pathogenic test of SPF chickens, 320 chickens pathogenic Escherichia coli isolates were identified as highly (n = 193), intermediate (n = 98) and low pathogenic (n = 29) strains, respectively. Furthermore, the number of virulence genes in the 320 chicken pathogenic and 50 non-pathogenic Escherichia coli strains was examined. Our results reveal that thirteen virulence genes in Escherichia coli strains were detected, and all strains carried at least two or more than two virulence-associated genes. This study also suggests that highly pathogenic E. coli strains simultaneously carried at least 8 to13 virulence genes while intermediate pathogenic strains carried at least 5 to 8 virulence genes. The number of virulence-associated genes detected in highly pathogenic strains showed there were more significant differences than that in low pathogenic strains (P irp2, fyuA, and colV in high pathogenic strains was significantly higher than that in low and non-pathogenic strains (P irp2, fyuA, iucA, iucD, iutA, papC, iss, tsh, and colV were more often detected in highly and intermediate pathogenic E. coli strains. Taken together, our results provide evidences demonstrating that the pathogenicity of Escherichia coli strains is closely associated with the number and combination patterns of virulence-associated genes.
基金Project supported by the National Key R&D Program of China(No.2020YFB1805002)the National Science Fund for Distinguished Young Scholars(No.61925102)+1 种基金the National Natural Science Foundation of China(Nos.62031019,92167202,and 62101069)the BUPT-CMCC Joint Innovation Center。
文摘Terahertz(THz)channel propagation characteristics are vital for the design,evaluation,and optimization of THz communication systems.Moreover,reflection plays a significant role in channel propagation.In this correspondence,the reflection coefficients of the THz channel are researched based on extensive measurement campaigns.
基金supported by the National Key R&D Program of China(No.2018YFB1801101)the National Science Fund for Distinguished Young Scholars,China(No.61925102)the Key Project of State Key Lab of Networking and Switching Technology,China(No.NST20180105),Huawei,and ZTE Corporation。
文摘With the commercialization of fifth generation networks worldwide,research into sixth generation(6G)networks has been launched to meet the demands for high data rates and low latency for future services.A wireless propagation channel is the transmission medium to transfer information between the transmitter and the receiver.Moreover,channel properties determine the ultimate performance limit of wireless communication systems.Thus,conducting channel research is a prerequisite to designing 6G wireless communication systems.In this paper,we first introduce several emerging technologies and applications for 6G,such as terahertz communication,industrial Internet of Things,space-air-ground integrated network,and machine learning,and point out the developing trends of 6G channel models.Then,we give a review of channel measurements and models for the technologies and applications.Finally,the outlook for 6G channel measurements and models is discussed.
基金Project supported by the Outstanding Youth Fund of National Natural Science Foundation of China(No.61925102)the National Key R&D Program of China(No.2020YFB1805002)+1 种基金the National Natural Science Foundation of China(No.62031019)the BUPT-CMCC Joint Innovation Center。
文摘This paper presents an empirical study of the uplink and downlink azimuth angle of arrival(AoA)in an urban micro(UMi)scenario at 28 GHz.At present,most UMi measurements are conducted in the downlink and then the uplink situation is inferred assuming channel reciprocity.Although the channel correlation coefficient of the uplink and downlink can be as high as 0.8,this does not mean that they are the same.Only a real uplink measurement can accurately describe its channel conditions,and this is what this study does.A receiver equipped with a rotatable horn antenna is mounted at the base station and the user terminal,respectively,in simulating the uplink and downlink.To improve the angular resolution,we extract the multipath components(MPCs)using the space-alternating generalized expectation-maximization algorithm.Also,a spatial lobe approach is used to cluster the MPCs in the power angular spectrum.By matching MPCs with objects in the environment,we find that direct propagation and first-order reflections are dominant in line-of-sight and non-line-of-sight cases.By comparing our measurement with those in standard channel models,we verify that the AoA of clusters follows a Gaussian distribution in the uplink and downlink.In addition,a two-dimensional Gaussian distribution for ray AoA and power is established to reflect their correlation.
基金supported by the National Natural Science Foundation of China(No.51679109,51809119)the Natural Science Foundation of Jiangsu Province(BK20170555)+1 种基金the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(17KJB470001)Special Fund for Ago-scientific Research in the Public Interest of China(201503130).
文摘Jet breakup and dispersion from impact sprinkler are mainly influenced by the configurations of nozzle and dispersion device.Based on the structure,different types of nozzles were designed and tested with a pointed tip dispersion device under low pressure conditions.Experiments were performed using High-Speed Photographic technique,and Matlab computation program was established and applied to determine the initial jet breakup length and angle of dispersion from the nozzles.The sprinkler range decreased with the increase in diameter of nozzle,and the largest range of 15.1 m was produced from sprinkler with 6 mm nozzle size under a pressure of 150 kPa.The angle of dispersion decreased with the increase of jet velocity,the spray coverage from sprinkler with 6 mm nozzle size was 1478 mm under 150 kPa,and was not statistically different when the pressure was increased.A new range formula was established for sprinkler with dispersion device through curve fitting of the parameters of initial jet breakup length,angle of dispersion,nozzle size and working pressure.The new formula was reliable for calculating range with a relative error less than 3%.Since the formula is based on the angle of dispersion,it could be useful to estimate uniformity of water distribution in sprinkler irrigated fields.
基金This work was supported by the National Natural Science Foundation of China(51679109)the Natural Science Foundation of Jiangsu Province(BK20170555)+2 种基金the Natural Foundation of the Higher Education Institutions of Jiangsu Province(17KJB470001)Special Scientific Research Fund of Agriculture Public Welfare Profession of China(201503130)Jiangsu Scientific Research and Innovation Program for Graduates in the Universities(KYLX15_1062).
文摘One way to adapt to the trend towards low-energy and to improve the hydraulic performance of the impact sprinkler under a low pressure condition is by means of a fixed water dispersion device.A fixed dispersion device disperses jet flow from the nozzle continuously.The shape of the tip,impact angle(θ),diameter(D),and depth in the jet flow(d)have significant influence on the hydraulic performance.In this study,the hydraulic performance characteristics of impact sprinkler as affected by the fixed water dispersion device were studied under indoor conditions.Radial water distributions from the sprinkler were obtained by experiments for the fixed water dispersion devices.MATLAB was used to transform the radial data into net data,and the uniformities were simulated in a square layout from 1 to 2 times the range(R).The droplet size distributions from the fixed water dispersion devices were measured by a laser precipitation monitor(LPM).Results showed that the range increased with the increase of pressure,and the sprinkler with type C_(2) produced a rectangular-shaped water distribution pattern,while the range was maintained.A maximum uniformity of 71.56%,75.56%,77.23%,73.32%,78.88%and 86.67%was found for types A1,B1,C1,A2,B2,and C_(2),respectively under a pressure of 200 kPa.The uniformity from the sprinkler using type C_(2) surpassed 80%,while type C1 fell below.Droplet sizes from type C_(2) was best,and the mean droplet diameter decreased with the increase of pressure.Hence,type C_(2) can be selected for further optimization of the design features to improve the hydraulic performance of the impact sprinkler under low pressure conditions.
基金This work was supported by the National Natural Science Foundation of China(51679109,51809119)the Natural Science Foundation of Jiangsu Province(BK20170555)+1 种基金the Natural Foundation of the Higher Education Institutions of Jiangsu Province(17KJB470001)Special Scientific Research Fund of Agriculture Public Welfare Profession of China(201503130).
文摘Water saving is an essential part of sprinkler irrigation owing to the impact of climate change and rising energy costs.This review highlights the technologies that are emerging in sprinkler irrigation to optimize crop production.While there have been notable advances in irrigation,the continued progress has occurred by the combination of current status with the postulation of new ideas such as conversion of high-pressure sprinkler to low-pressure ones,incorporation of smart controllers in sprinkler irrigation systems.To enhance the adoption of these technologies,research on the dispersion device is needed to improve the performance of impact sprinklers to efficiently operate at low-pressure conditions.It is also important to study how water savings estimates based on water use,irrigated area,longevity of saving,and level of wasteful irrigation prior to the retrofit obtained from field trials can be extrapolated to other areas with different conditions.Research in the development of optimized method for irrigation scheduling is necessary.This review emphasizes that the status of technologies should be considered a continuum,building on earlier knowledge and progress,and hopefully leading toward optimized crop production in sprinkler irrigated areas.