Flexible lithium metal batteries with high capacity and power density have been regarded as the core power resources of wearable electronics.However,the main challenge lies in the limited electrochemical performance o...Flexible lithium metal batteries with high capacity and power density have been regarded as the core power resources of wearable electronics.However,the main challenge lies in the limited electrochemical performance of solid-state polymer electrolytes,which hinders further practical applications.Incorporating functional inorganic additives is an effective approach to improve the performance,including increasing ionic conductivity,achieving dendrite inhibiting capability,and improving safety and stability.Herein,this review summarizes the latest developments of functional inorganic additives in composite solid-state electrolytes for flexible metal batteries with special emphasis on their mechanisms,strategies,and cutting-edge applications,in particular,the relationship between them is discussed in detail.Finally,the perspective on future research directions and the key challenges on this topic are outlooked.展开更多
Geometrical configurations play a crucial role in dual-atom catalysts(DACs)for electrocatalytic applications.Significant progress has been made to design DACs electrocatalysts with various geometri-cal configurations,...Geometrical configurations play a crucial role in dual-atom catalysts(DACs)for electrocatalytic applications.Significant progress has been made to design DACs electrocatalysts with various geometri-cal configurations,but in-depth understanding the relationship between geometrical configurations and metal-metal interaction mechanisms for designing targeted DACs is still required.In this review,the recent progress in engineering of geometrical configurations of DACs is systematically summarized.Based on the polarity of geometrical configuration,DACs can be classified into two different types that are homonuclear and heteronuclear DACs.Furthermore,with regard to the geometrical configurations of the active sites,homonuclear DACs are identified into adjacent and bridged configurations,and heteronuclear DACs can be classified into adjacent,bridged,and separated configurations.Subsequently,metal-metal interactions in DACs with different geometrical configurations are introduced.Additionally,the applications of DACs in different electrocatalytic reactions are discussed,including the oxygen reduction reaction(ORR),oxygen evolution reaction(OER),hydrogen evolution reaction(HER),and other catalysis.Finally,the future challenges and perspectives for advancements in DACs are high-lighted.This review aims to provide inspiration for the design of highly effcient DACs towards energy relatedapplications.展开更多
The molybdenum carbide(Mo_(2)C)has been regarded as one of the most cost-efficient and stable electrocatalyst for the hydrogen evolution reaction(HER)by the virtue of its Pt-like electronic structures.However,the inhe...The molybdenum carbide(Mo_(2)C)has been regarded as one of the most cost-efficient and stable electrocatalyst for the hydrogen evolution reaction(HER)by the virtue of its Pt-like electronic structures.However,the inherent limitation of high density of empty valence band significantly reduces its catalytic reactivity by reason of strong hydrogen desorption resistance.Herein,we propose a multiscale confinement synthesis method to design the nitrogen-rich Mo_(2)C for modulating the band structure via decomposing the pre-coordination bonded polymer in a pressure-tight tube sealing system.Pre-bonded c/N-Mo in the coordination precursor constructs a micro-confinement space,enabling the homogeneous nitrogenization in-situ happened during the formation of Mo_(2)C.Simultaneously,the evolved gases from the precursor decomposition in tube sealing system establish a macro-confinement environment,preventing the lattice N escape and further endowing a continuous nitridation.Combining the multiscale confinement effects,the nitrogen-rich Mo2C displays as high as 25%N-Mo concentration in carbide lattice,leading to a satisfactory band structure.Accordingly,the constructed nitrogen-rich Mo_(2)C reveals an adorable catalytic activity for HER in both alkaline and acid solution.It is anticipated that the multiscale confinement synthesis strategy presents guideline for the rational design of electrocatalysts and beyond.展开更多
抑制电磁干扰是解决光纤陀螺尤其是轻小型光纤陀螺低速灵敏度的关键问题,为了从电源完整性角度研究光纤陀螺检测电路干扰传导特性,需要对光电探测组件的电源抑制比进行测试。针对光纤陀螺微弱信号检测的特点,提出一种基于锁相放大器的...抑制电磁干扰是解决光纤陀螺尤其是轻小型光纤陀螺低速灵敏度的关键问题,为了从电源完整性角度研究光纤陀螺检测电路干扰传导特性,需要对光电探测组件的电源抑制比进行测试。针对光纤陀螺微弱信号检测的特点,提出一种基于锁相放大器的光电探测组件电源抑制比测试方案,通过测量普通运算放大器的电源抑制比并与手册给定的典型值进行对比,校验了测试系统的准确性。以中低精度光纤陀螺调制-解调频率范围为例,利用该测试系统测量了光电探测组件100 k Hz^3 MHz内电源抑制比频率特性曲线。实验结果表明,光电探测组件的电源抑制比呈明显的高通特性,在100 k Hz频率点处+PSRR约为29.5 d B,到达3 MHz处衰减为17.8 d B,为后续计算电源传导干扰抑制要求和优化电源退耦网络提供了依据。展开更多
基金supported by the Natural Science Foundation of China(No.22179062,52125202,22171136,and U2004209)financial support by the Fundamental Research Funds for the Central Universities(No.30922010303)the financial support by the Natural Science Foundation of Jiangsu Province(BK20220079).
文摘Flexible lithium metal batteries with high capacity and power density have been regarded as the core power resources of wearable electronics.However,the main challenge lies in the limited electrochemical performance of solid-state polymer electrolytes,which hinders further practical applications.Incorporating functional inorganic additives is an effective approach to improve the performance,including increasing ionic conductivity,achieving dendrite inhibiting capability,and improving safety and stability.Herein,this review summarizes the latest developments of functional inorganic additives in composite solid-state electrolytes for flexible metal batteries with special emphasis on their mechanisms,strategies,and cutting-edge applications,in particular,the relationship between them is discussed in detail.Finally,the perspective on future research directions and the key challenges on this topic are outlooked.
基金supported by the Natural Science Foundation of China (22179062,52125202,and U2004209)the Natural Science Foundation of Jiangsu Province (BK20230035)+1 种基金the Fundamental Research Funds for the Central Universities (30922010303)the Intergovernmental Cooperation Projects in the National Key Research and Development Plan of the Ministry of Science and Technology of PRC (2022YFE0196800)
文摘Geometrical configurations play a crucial role in dual-atom catalysts(DACs)for electrocatalytic applications.Significant progress has been made to design DACs electrocatalysts with various geometri-cal configurations,but in-depth understanding the relationship between geometrical configurations and metal-metal interaction mechanisms for designing targeted DACs is still required.In this review,the recent progress in engineering of geometrical configurations of DACs is systematically summarized.Based on the polarity of geometrical configuration,DACs can be classified into two different types that are homonuclear and heteronuclear DACs.Furthermore,with regard to the geometrical configurations of the active sites,homonuclear DACs are identified into adjacent and bridged configurations,and heteronuclear DACs can be classified into adjacent,bridged,and separated configurations.Subsequently,metal-metal interactions in DACs with different geometrical configurations are introduced.Additionally,the applications of DACs in different electrocatalytic reactions are discussed,including the oxygen reduction reaction(ORR),oxygen evolution reaction(OER),hydrogen evolution reaction(HER),and other catalysis.Finally,the future challenges and perspectives for advancements in DACs are high-lighted.This review aims to provide inspiration for the design of highly effcient DACs towards energy relatedapplications.
基金supported by the National Natural Science Foundation of China(52372201,52125202,52202247)the Natural Science Foundation of Jiangsu Province(1192261031693)the Fundamental Research Funds for the Central Universities(30919011110,1191030558)。
文摘The molybdenum carbide(Mo_(2)C)has been regarded as one of the most cost-efficient and stable electrocatalyst for the hydrogen evolution reaction(HER)by the virtue of its Pt-like electronic structures.However,the inherent limitation of high density of empty valence band significantly reduces its catalytic reactivity by reason of strong hydrogen desorption resistance.Herein,we propose a multiscale confinement synthesis method to design the nitrogen-rich Mo_(2)C for modulating the band structure via decomposing the pre-coordination bonded polymer in a pressure-tight tube sealing system.Pre-bonded c/N-Mo in the coordination precursor constructs a micro-confinement space,enabling the homogeneous nitrogenization in-situ happened during the formation of Mo_(2)C.Simultaneously,the evolved gases from the precursor decomposition in tube sealing system establish a macro-confinement environment,preventing the lattice N escape and further endowing a continuous nitridation.Combining the multiscale confinement effects,the nitrogen-rich Mo2C displays as high as 25%N-Mo concentration in carbide lattice,leading to a satisfactory band structure.Accordingly,the constructed nitrogen-rich Mo_(2)C reveals an adorable catalytic activity for HER in both alkaline and acid solution.It is anticipated that the multiscale confinement synthesis strategy presents guideline for the rational design of electrocatalysts and beyond.
文摘抑制电磁干扰是解决光纤陀螺尤其是轻小型光纤陀螺低速灵敏度的关键问题,为了从电源完整性角度研究光纤陀螺检测电路干扰传导特性,需要对光电探测组件的电源抑制比进行测试。针对光纤陀螺微弱信号检测的特点,提出一种基于锁相放大器的光电探测组件电源抑制比测试方案,通过测量普通运算放大器的电源抑制比并与手册给定的典型值进行对比,校验了测试系统的准确性。以中低精度光纤陀螺调制-解调频率范围为例,利用该测试系统测量了光电探测组件100 k Hz^3 MHz内电源抑制比频率特性曲线。实验结果表明,光电探测组件的电源抑制比呈明显的高通特性,在100 k Hz频率点处+PSRR约为29.5 d B,到达3 MHz处衰减为17.8 d B,为后续计算电源传导干扰抑制要求和优化电源退耦网络提供了依据。