This paper presents experimental studies on a compacted expansive soil,from Nanyang,China for investigating the at-rest lateral earth pressureσL of expansive soils.The key studies include(i)relationships between the...This paper presents experimental studies on a compacted expansive soil,from Nanyang,China for investigating the at-rest lateral earth pressureσL of expansive soils.The key studies include(i)relationships between theσL and the vertical stressσV during soaking and consolidation,(ii)the influences of initial dry densityρd0 and moisture content w 0 on the vertical and lateral swelling pressures at no swelling strain(i.e.σV0 andσL0),and(iii)evolution of theσL during five long-term wetting-drying cycles.Experimental results demonstrated that the post-soakingσL-σV relationships are piecewise linear and their slopes in the passive state(σL>σV)and active state(σL<σV)are similar to that of the consolidationσL-σV relationships in the normal-and over-consolidated states,respectively.The soakingσL-σV relationships converge to the consolidationσL-σV relationships at a thresholdσV where the interparticle swelling is restrained.TheσL0 andσV0 increase monotonically withρd0;however,they show increasing-then-decreasing trends with the w 0.The extent of compaction-induced swelling anisotropy,which is evaluated byσL0/σV0,reduces with an increase in the compaction energy and molding water content.TheσL reduces over moisture cycles and the stress relaxation in theσL during soaking is observed.An approach was developed to predict the at-rest soakingσL-σV relationships,which requires conventional consolidation and shear strength properties and one measurement of theσL-σV relationships during soaking.The proposed approach was validated using the results of three different expansive soils available in the literature.展开更多
It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on b...It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on bubble motion and gas-liquid mass transfer process in a bubble column.Particle image velocimetry(PIV)technology was employed to analyze the flow field and bubble motion behavior,and dynamic oxygen absorption technology was used to measure the gas-liquid volumetric mass transfer coefficient(kLa).The effect of embedding wire mesh,adding solid particles,and wire mesh coupling solid particles on the flow characteristic and kLa were analyzed and compared.The results show that the gas-liquid interface area increases by 33%-72%when using the wire mesh coupling solid particles strategy compared to the gas-liquid two-phase flow,which is superior to the other two strengthening methods.Compared with the system without reinforcement,kLa in the bubble column increased by 0.5-1.8 times with wire mesh coupling solid particles method,which is higher than the sum of kLa increases with inserting wire mesh and adding particles,and the coupling reinforcement mechanism for affecting gas-liquid mass transfer process was discussed to provide a new idea for enhancing gas-liquid mass transfer.展开更多
Background:Osteosarcoma(OS),recognized as the predominant malignant tumor originating from bones,necessitates an in-depth comprehension of its intrinsic mechanisms to pinpoint novel therapeutic targets and enhance tre...Background:Osteosarcoma(OS),recognized as the predominant malignant tumor originating from bones,necessitates an in-depth comprehension of its intrinsic mechanisms to pinpoint novel therapeutic targets and enhance treatment methodologies.The role of fat mass and obesity-associated(FTO)in OS,particularly its correlation with malignant traits,and the fundamental mechanism,remains to be elucidated.Materials and Methods:1.The FTO expression and survival rate in tumors were analyzed.2.FTO in OS cell lines was quantified utilizing western blot and PCR.3.FTO was upregulated and downregulated separately in MG63.4.The impact of FTO on the proliferation and migration of OS cells was evaluated using CCK-8,colony formation,wound healing,and Transwell assays.5.The expression of miR-150-5p in OS cells-derived exosomes was identified.6.The binding of miR-150-5p to FTO was predicted by TargetScan and confirmed by luciferase reporter assay.7.The impact of exosome miR-150-5p on the proliferation and migration of OS cells was investigated.Results:The expression of FTO was higher in OS tissues compared to normal tissues correlating with a worse survival rate.Furthermore,the downregulation of FTO significantly impeded the growth and metastasis of OS cells.Additionally,miR-150-5p,which was downregulated in both OS cells and their derived exosomes,was found to bind to the 3′-UTR of FTO through dual luciferase experiments.Exosomal miR-150-5p was found to decrease the expression of FTO and inhibit cell viability.Conclusions:We identified elevated levels of FTO in OS,which may be attributed to insufficient miR-150-5p levels in both the cells and exosomes.It suggests that the dysregulation of miR-150-5p and its interaction with FTO could potentially promote the development of OS.展开更多
Short pitch corrugation has been a problem for railways worldwide over one century.In this paper,a parametric investigation of fastenings is conducted to understand the corrugation formation mechanism and gain insight...Short pitch corrugation has been a problem for railways worldwide over one century.In this paper,a parametric investigation of fastenings is conducted to understand the corrugation formation mechanism and gain insights into corrugation mitigation.A three-dimensional finite element vehicle-track dynamic interaction model is employed,which considers the coupling between the structural dynamics and the contact mechanics,while the damage mechanism is assumed to be differential wear.Various fastening models with different configurations,boundary conditions,and parameters of stiffness and damping are built up and analysed.These models may represent different service stages of fastenings in the field.Besides,the effect of train speeds on corrugation features is studied.The results indicate:(1)Fastening parameters and modelling play an important role in corrugation formation.(2)The fastening longitudinal constraint to the rail is the major factor that determines the corrugation formation.The fastening vertical and lateral constraints influence corrugation features in terms of spatial distribution and wavelength components.(3)The strengthening of fastening constraints in the longitudinal dimension helps to mitigate corrugation.Meanwhile,the inner fastening constraint in the lateral direction is necessary for corrugation alleviation.(4)The increase in fastening longitudinal stiffness and damping can reduce the vibration amplitudes of longitudinal compression modes and thus reduce the track corrugation propensity.The simulation in this work can well explain the field corrugation in terms of the occurrence possibility and major wavelength components.It can also explain the field data with respect to the small variation between the corrugation wavelength and train speed,which is caused by frequency selection and jump between rail longitudinal compression modes.展开更多
BACKGROUND Due to frequent and high-risk sports activities,the elbow joint is susceptible to injury,especially to cartilage tissue,which can cause pain,limited movement and even loss of joint function.AIM To evaluate ...BACKGROUND Due to frequent and high-risk sports activities,the elbow joint is susceptible to injury,especially to cartilage tissue,which can cause pain,limited movement and even loss of joint function.AIM To evaluate magnetic resonance imaging(MRI)multisequence imaging for improving the diagnostic accuracy of adult elbow cartilage injury.METHODS A total of 60 patients diagnosed with elbow cartilage injury in our hospital from January 2020 to December 2021 were enrolled in this retrospective study.We analyzed the accuracy of conventional MRI sequences(T1-weighted imaging,T2-weighted imaging,proton density weighted imaging,and T2 star weighted image)and Three-Dimensional Coronary Imaging by Spiral Scanning(3D-CISS)in the diagnosis of elbow cartilage injury.Arthroscopy was used as the gold standard to evaluate the diagnostic effect of single and combination sequences in different injury degrees and the consistency with arthroscopy.RESULTS The diagnostic accuracy of 3D-CISS sequence was 89.34%±4.98%,the sensitivity was 90%,and the specificity was 88.33%,which showed the best performance among all sequences(P<0.05).The combined application of the whole sequence had the highest accuracy in all sequence combinations,the accuracy of mild injury was 91.30%,the accuracy of moderate injury was 96.15%,and the accuracy of severe injury was 93.33%(P<0.05).Compared with arthroscopy,the combination of all MRI sequences had the highest consistency of 91.67%,and the kappa value reached 0.890(P<0.001).CONCLUSION Combination of 3D-CISS and each sequence had significant advantages in improving MRI diagnostic accuracy of elbow cartilage injuries in adults.Multisequence MRI is recommended to ensure the best diagnosis and treatment.展开更多
[Objectives]This study was conducted to explore suitable organic compound application models for watermelon growth.[Methods]With watermelon hybrid material"M22×P18"as the test material,the effects of fo...[Objectives]This study was conducted to explore suitable organic compound application models for watermelon growth.[Methods]With watermelon hybrid material"M22×P18"as the test material,the effects of four functional organic materials,namely garlic straw treatment(T_(1)),onion straw treatment(T_(2)),garlic straw+sheep manure treatment(T_(3))and onion straw+chicken manure treatment(T_(4)),on the morphological indexes,yield and quality of watermelon were investigated.[Results]Different functional organic materials had different effects on morphological indexes,yield and quality of watermelon.The morphological indexes,nutritional quality indexes and yield of watermelon treated with garlic straw and sheep manure compound(T_(3))and onion straw and chicken manure compound(T_(4))were significantly higher than those treated simply with garlic straw(T_(1))and onion straw(T_(2)),and T_(3)performed relatively better.Compared with treatment T_(2),T_(3)showed a stem diameter,vine length and leaf number increasing by 43.05%,46.69%and 40.77%respectively,central sugar and side sugar contents increasing by 11.72%and 21.90%respectively,and a yield increasing by 42.91%,with significant differences from T_(2).[Conclusions]This study provides technical support for high-quality and high-yielding cultivation of watermelon.展开更多
Activation of extracellular signal-regulated kinase 1/2 has been demonstrated in acute brain ischemia. We hypothesized that activated extracellular signal-regulated kinase 1/2 can protect hippocampal neurons from inju...Activation of extracellular signal-regulated kinase 1/2 has been demonstrated in acute brain ischemia. We hypothesized that activated extracellular signal-regulated kinase 1/2 can protect hippocampal neurons from injury in a diabetic model after cerebral ischemia/reperfusion. In this study, transient whole-brain ischemia was induced by four-vessel occlusion in normal and diabetic rats, and extracellular signal-regulated kinase 1/2 inhibitor (U0126) was administered into diabetic rats 30 minutes before ischemia as a pretreatment. Results showed that the number of surviving neurons in the hippocampal CA1 region was reduced, extracellular signal-regulated kinase 1/2 phosphorylation and KuT0 activity were decreased, and pro-apoptotic Bax expression was upregulated after intervention using U0126. These findings demonstrate that inhibition of extracellular signal-regulated kinase 1/2 activity aggravated neuronal loss in the hippocampus in a diabetic rat after cerebral ischemia/reperfusion, further decreased DNA repairing ability and ac- celerated apoptosis in hippocampal neurons. Extracellular signal-regulated kinase 1/2 activation plays a neuroprotective role in hippocampal neurons in a diabetic rat after cerebral ischemia/ reperfusion.展开更多
DI-3n-butyiphthalide can effectively treat cerebral ischemia; however, the mechanisms underlying the effects of dl-3n-butylphthalide on microcirculation disorders following diffuse brain injury remain unclear. In this...DI-3n-butyiphthalide can effectively treat cerebral ischemia; however, the mechanisms underlying the effects of dl-3n-butylphthalide on microcirculation disorders following diffuse brain injury remain unclear. In this study, models of diffuse brain injury were established in Sprague-Dawley rats with the vertical impact method. DI-3n-butylphthalide at 80 and 160 mg/kg was given via intraperitoneal injection immediately after diffuse brain injury. Ultrastructural changes in the cerebral cortex were observed using electron microscopy. Cerebral blood flow was measured by laser Doppler flowmetry, vascular density was marked by tannic acid-ferric chloride staining, vascular permeability was es- timated by the Evans blue method, brain water content was measured using the dry-wet method, and rat behavior was measured by motor function and sensory function tests. At 6, 24, 48, and 72 hours after administration of dl-3n-butylphthalide, reduced cerebral ultrastructure damage, in- creased vascular density and cerebral blood flow, and improved motor and sensory functions were observed. Our findings demonstrate that dl-3n-butylphthalide may have protective effects against diffuse brain injury by ameliorating microcirculation disorder and reducing blood-brain barrier dam- age and cerebral edema.展开更多
We present systematic investigations on the physics,detection performance and inversion of logging-while-drilling extradeep azimuthal resistivity measurements(EDARM).First,the definitions of EDRAM measurements are dis...We present systematic investigations on the physics,detection performance and inversion of logging-while-drilling extradeep azimuthal resistivity measurements(EDARM).First,the definitions of EDRAM measurements are discussed,followed by the derivation of the attenuation and phase-shift geometrical factors to illustrate the relative contributions of formation units to the observed signals.Then,a new definition of detection depth,which considers the uncertainty of inversion results caused by the data noise,is proposed to quantify the detection capability of ED ARM.Finally,the B ayesian theory associated with Markov chain Monte Carlo sampling is introduced for fast processing of EDARM data.Numerical results show that ED ARM is capable of detecting the azimuth and distance of remote bed boundaries,and the detection capability increases with increasing spacing and resistivity contrast.The EDARM tool can accommodate a large range of formation resistivity and is able to provide the resistivity anisotropy at arbitrary relative dipping angles.In addition,multiple bed boundaries and reservoir images near the borehole are readily obtained by using the Bayesian inversion.展开更多
The West Junggar orogen,located in the southwestern Central Asian Orogenic Belt(CAOB),preserves an abundant record of tectonic processes associated with the evolution of the Junggar Ocean.In this study,we use detrital...The West Junggar orogen,located in the southwestern Central Asian Orogenic Belt(CAOB),preserves an abundant record of tectonic processes associated with the evolution of the Junggar Ocean.In this study,we use detrital zircon U–Pb age data from Ordovician to Carboniferous sandstones in the southern and central West Junggar domains,complemented by literature data,to better constrain the tectonic evolution of the southwestern CAOB.The Kekeshayi,Qiargaye,and Laba formations in the southern West Junggar domain were deposited during the Darriwilian-Sandbian,Katian-Aeronian,and Homerian-Emsian,respectively.Detrital zircon provenances of these formations display a marked shift from the southern West Junggar domain to the Paleo-Kazakhstan Continent(PKC).This suggests that the southern West Junggar intra-oceanic arc might have gradually accreted to the northern margin of the PKC prior to the Emsian,which has significantly contributed to the lateral growth of the PKC.The Carboniferous strata,Xibeikulasi,Baogutu,and Tailegula formations,in the central West Junggar domain represent a coherent sequence of volcaniclastic turbidites and were deposited in a progressively shrinking remnant oceanic basin during the Visean to Moscovian.They contain unimodal detrital zircon distributions and are derived from the local and coeval magmatic rocks in the central West Junggar domain.We propose that the final closure of the Junggar Ocean likely occurred in the end of the Late Carboniferous in response to regional amalgamation events in the southwestern CAOB,which marks the final assembly of the Kazakhstan Orocline.The central and southern West Junggar domains underwent individual evolution in the Paleozoic,and were recombined by the significant intra-continental reworking along the large-scale strike-slip faults.展开更多
Gas–liquid multiphase flow is a significant phenomenon in chemical processes. The rising behaviors of single bubbles in the quiescent liquids have been investigated but the internal flow patterns and deformation rule...Gas–liquid multiphase flow is a significant phenomenon in chemical processes. The rising behaviors of single bubbles in the quiescent liquids have been investigated but the internal flow patterns and deformation rules of bubbles, which influence the mass transfer efficiency to a large extent, have received much less attention. In this paper, the volume of fluid method was used to calculate the bubble shapes, pressure, velocity distributions,and the flow patterns inside the bubbles. The rising behavior of the bubbles with four different initial diameters,i.e., 3 mm, 5 mm, 7 mm and 9 mm was investigated in four various liquids including water, 61.23% glycerol,86.73% glycerol and 100% glycerol. The results show that the liquid properties and bubble initial diameters have great impacts on bubble shapes. Moreover, flow patterns inside the bubbles with different initial diameters were analyzed and classified into three types under the condition of different bubble shapes. Three correlations for predicting the maximum internal circulation inside the bubbles in 86.73% glycerol were presented and the R-square values were all bigger than 0.98. Through analyzing the pressure and velocity distributions around the bubbles, four rules of bubble deformation were also obtained to explain and predict the shapes.展开更多
DDX3X is a highly conserved DEAD-box RNA helicase that participates in RNA transcription, RNA splicing, and mRNA transport, translation, and nucleo-cytoplasmic transport. It is highly expressed in metaphase II (MII)...DDX3X is a highly conserved DEAD-box RNA helicase that participates in RNA transcription, RNA splicing, and mRNA transport, translation, and nucleo-cytoplasmic transport. It is highly expressed in metaphase II (MII) oocytes and is the predominant DDX3 variant in the ovary and embryo. However, whether it is important in mouse early embryo development remains unknown. In this study, we investigated the function of DDX3X in early embryogenesis by cytoplasmic microinjection with its siRNA in zygotes or single blastomeres of 2-cell embryos. Our results showed that knockdown of Ddx3x in zygote cytoplasm led to dramatically diminished blastocyst formarion, reduced cell numbers, and an increase in the number of apoptotic cells in blastocysts. Meanwhile, there was an accumulation of p53 in RNAi blastocysts. In addition, the ratio of cell cycle arrest during 2-cell to 4-cell transition increased following microinjection of Ddx3x siRNA into single blastomeres of 2-cell embryos compared with control. These results suggest that Ddx3x is an essential gene associated with cell survival and cell cycle control in mouse early embryos, and thus plays key roles in normal embryo development.展开更多
基金sponsored by the National Natural Science Foundation of China(Grant Nos.52378365 and 52179109)Jiangsu Province Excellent Postdoctoral Program(Grant No.2023)China Scholarship Council-University of Ottawa Joint Scholarship.
文摘This paper presents experimental studies on a compacted expansive soil,from Nanyang,China for investigating the at-rest lateral earth pressureσL of expansive soils.The key studies include(i)relationships between theσL and the vertical stressσV during soaking and consolidation,(ii)the influences of initial dry densityρd0 and moisture content w 0 on the vertical and lateral swelling pressures at no swelling strain(i.e.σV0 andσL0),and(iii)evolution of theσL during five long-term wetting-drying cycles.Experimental results demonstrated that the post-soakingσL-σV relationships are piecewise linear and their slopes in the passive state(σL>σV)and active state(σL<σV)are similar to that of the consolidationσL-σV relationships in the normal-and over-consolidated states,respectively.The soakingσL-σV relationships converge to the consolidationσL-σV relationships at a thresholdσV where the interparticle swelling is restrained.TheσL0 andσV0 increase monotonically withρd0;however,they show increasing-then-decreasing trends with the w 0.The extent of compaction-induced swelling anisotropy,which is evaluated byσL0/σV0,reduces with an increase in the compaction energy and molding water content.TheσL reduces over moisture cycles and the stress relaxation in theσL during soaking is observed.An approach was developed to predict the at-rest soakingσL-σV relationships,which requires conventional consolidation and shear strength properties and one measurement of theσL-σV relationships during soaking.The proposed approach was validated using the results of three different expansive soils available in the literature.
基金supported by the Key Research and Development Plan of Shandong Province(the Major Scientific and Technological Innovation Projects,2021ZDSYS13)the Natural Science Foundation of Shandong Province(ZR2021MB135)Natural Science Foundation of Shandong Province(ZR2021ME224).
文摘It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on bubble motion and gas-liquid mass transfer process in a bubble column.Particle image velocimetry(PIV)technology was employed to analyze the flow field and bubble motion behavior,and dynamic oxygen absorption technology was used to measure the gas-liquid volumetric mass transfer coefficient(kLa).The effect of embedding wire mesh,adding solid particles,and wire mesh coupling solid particles on the flow characteristic and kLa were analyzed and compared.The results show that the gas-liquid interface area increases by 33%-72%when using the wire mesh coupling solid particles strategy compared to the gas-liquid two-phase flow,which is superior to the other two strengthening methods.Compared with the system without reinforcement,kLa in the bubble column increased by 0.5-1.8 times with wire mesh coupling solid particles method,which is higher than the sum of kLa increases with inserting wire mesh and adding particles,and the coupling reinforcement mechanism for affecting gas-liquid mass transfer process was discussed to provide a new idea for enhancing gas-liquid mass transfer.
文摘Background:Osteosarcoma(OS),recognized as the predominant malignant tumor originating from bones,necessitates an in-depth comprehension of its intrinsic mechanisms to pinpoint novel therapeutic targets and enhance treatment methodologies.The role of fat mass and obesity-associated(FTO)in OS,particularly its correlation with malignant traits,and the fundamental mechanism,remains to be elucidated.Materials and Methods:1.The FTO expression and survival rate in tumors were analyzed.2.FTO in OS cell lines was quantified utilizing western blot and PCR.3.FTO was upregulated and downregulated separately in MG63.4.The impact of FTO on the proliferation and migration of OS cells was evaluated using CCK-8,colony formation,wound healing,and Transwell assays.5.The expression of miR-150-5p in OS cells-derived exosomes was identified.6.The binding of miR-150-5p to FTO was predicted by TargetScan and confirmed by luciferase reporter assay.7.The impact of exosome miR-150-5p on the proliferation and migration of OS cells was investigated.Results:The expression of FTO was higher in OS tissues compared to normal tissues correlating with a worse survival rate.Furthermore,the downregulation of FTO significantly impeded the growth and metastasis of OS cells.Additionally,miR-150-5p,which was downregulated in both OS cells and their derived exosomes,was found to bind to the 3′-UTR of FTO through dual luciferase experiments.Exosomal miR-150-5p was found to decrease the expression of FTO and inhibit cell viability.Conclusions:We identified elevated levels of FTO in OS,which may be attributed to insufficient miR-150-5p levels in both the cells and exosomes.It suggests that the dysregulation of miR-150-5p and its interaction with FTO could potentially promote the development of OS.
文摘Short pitch corrugation has been a problem for railways worldwide over one century.In this paper,a parametric investigation of fastenings is conducted to understand the corrugation formation mechanism and gain insights into corrugation mitigation.A three-dimensional finite element vehicle-track dynamic interaction model is employed,which considers the coupling between the structural dynamics and the contact mechanics,while the damage mechanism is assumed to be differential wear.Various fastening models with different configurations,boundary conditions,and parameters of stiffness and damping are built up and analysed.These models may represent different service stages of fastenings in the field.Besides,the effect of train speeds on corrugation features is studied.The results indicate:(1)Fastening parameters and modelling play an important role in corrugation formation.(2)The fastening longitudinal constraint to the rail is the major factor that determines the corrugation formation.The fastening vertical and lateral constraints influence corrugation features in terms of spatial distribution and wavelength components.(3)The strengthening of fastening constraints in the longitudinal dimension helps to mitigate corrugation.Meanwhile,the inner fastening constraint in the lateral direction is necessary for corrugation alleviation.(4)The increase in fastening longitudinal stiffness and damping can reduce the vibration amplitudes of longitudinal compression modes and thus reduce the track corrugation propensity.The simulation in this work can well explain the field corrugation in terms of the occurrence possibility and major wavelength components.It can also explain the field data with respect to the small variation between the corrugation wavelength and train speed,which is caused by frequency selection and jump between rail longitudinal compression modes.
文摘BACKGROUND Due to frequent and high-risk sports activities,the elbow joint is susceptible to injury,especially to cartilage tissue,which can cause pain,limited movement and even loss of joint function.AIM To evaluate magnetic resonance imaging(MRI)multisequence imaging for improving the diagnostic accuracy of adult elbow cartilage injury.METHODS A total of 60 patients diagnosed with elbow cartilage injury in our hospital from January 2020 to December 2021 were enrolled in this retrospective study.We analyzed the accuracy of conventional MRI sequences(T1-weighted imaging,T2-weighted imaging,proton density weighted imaging,and T2 star weighted image)and Three-Dimensional Coronary Imaging by Spiral Scanning(3D-CISS)in the diagnosis of elbow cartilage injury.Arthroscopy was used as the gold standard to evaluate the diagnostic effect of single and combination sequences in different injury degrees and the consistency with arthroscopy.RESULTS The diagnostic accuracy of 3D-CISS sequence was 89.34%±4.98%,the sensitivity was 90%,and the specificity was 88.33%,which showed the best performance among all sequences(P<0.05).The combined application of the whole sequence had the highest accuracy in all sequence combinations,the accuracy of mild injury was 91.30%,the accuracy of moderate injury was 96.15%,and the accuracy of severe injury was 93.33%(P<0.05).Compared with arthroscopy,the combination of all MRI sequences had the highest consistency of 91.67%,and the kappa value reached 0.890(P<0.001).CONCLUSION Combination of 3D-CISS and each sequence had significant advantages in improving MRI diagnostic accuracy of elbow cartilage injuries in adults.Multisequence MRI is recommended to ensure the best diagnosis and treatment.
基金Supported by Shangqiu Science and Technology Research Project(202405).
文摘[Objectives]This study was conducted to explore suitable organic compound application models for watermelon growth.[Methods]With watermelon hybrid material"M22×P18"as the test material,the effects of four functional organic materials,namely garlic straw treatment(T_(1)),onion straw treatment(T_(2)),garlic straw+sheep manure treatment(T_(3))and onion straw+chicken manure treatment(T_(4)),on the morphological indexes,yield and quality of watermelon were investigated.[Results]Different functional organic materials had different effects on morphological indexes,yield and quality of watermelon.The morphological indexes,nutritional quality indexes and yield of watermelon treated with garlic straw and sheep manure compound(T_(3))and onion straw and chicken manure compound(T_(4))were significantly higher than those treated simply with garlic straw(T_(1))and onion straw(T_(2)),and T_(3)performed relatively better.Compared with treatment T_(2),T_(3)showed a stem diameter,vine length and leaf number increasing by 43.05%,46.69%and 40.77%respectively,central sugar and side sugar contents increasing by 11.72%and 21.90%respectively,and a yield increasing by 42.91%,with significant differences from T_(2).[Conclusions]This study provides technical support for high-quality and high-yielding cultivation of watermelon.
基金supported by the Hebei Province Natural Science Program,No.H2012401007a grant from the foundation Key Project of Hebei Province Education Ministry,No.ZD2010106
文摘Activation of extracellular signal-regulated kinase 1/2 has been demonstrated in acute brain ischemia. We hypothesized that activated extracellular signal-regulated kinase 1/2 can protect hippocampal neurons from injury in a diabetic model after cerebral ischemia/reperfusion. In this study, transient whole-brain ischemia was induced by four-vessel occlusion in normal and diabetic rats, and extracellular signal-regulated kinase 1/2 inhibitor (U0126) was administered into diabetic rats 30 minutes before ischemia as a pretreatment. Results showed that the number of surviving neurons in the hippocampal CA1 region was reduced, extracellular signal-regulated kinase 1/2 phosphorylation and KuT0 activity were decreased, and pro-apoptotic Bax expression was upregulated after intervention using U0126. These findings demonstrate that inhibition of extracellular signal-regulated kinase 1/2 activity aggravated neuronal loss in the hippocampus in a diabetic rat after cerebral ischemia/reperfusion, further decreased DNA repairing ability and ac- celerated apoptosis in hippocampal neurons. Extracellular signal-regulated kinase 1/2 activation plays a neuroprotective role in hippocampal neurons in a diabetic rat after cerebral ischemia/ reperfusion.
基金supported by the grants from Hebei Province Science and Technology Ministry,No.20276102DKey Project of Hebei Province Education Ministry,No.ZD2010106
文摘DI-3n-butyiphthalide can effectively treat cerebral ischemia; however, the mechanisms underlying the effects of dl-3n-butylphthalide on microcirculation disorders following diffuse brain injury remain unclear. In this study, models of diffuse brain injury were established in Sprague-Dawley rats with the vertical impact method. DI-3n-butylphthalide at 80 and 160 mg/kg was given via intraperitoneal injection immediately after diffuse brain injury. Ultrastructural changes in the cerebral cortex were observed using electron microscopy. Cerebral blood flow was measured by laser Doppler flowmetry, vascular density was marked by tannic acid-ferric chloride staining, vascular permeability was es- timated by the Evans blue method, brain water content was measured using the dry-wet method, and rat behavior was measured by motor function and sensory function tests. At 6, 24, 48, and 72 hours after administration of dl-3n-butylphthalide, reduced cerebral ultrastructure damage, in- creased vascular density and cerebral blood flow, and improved motor and sensory functions were observed. Our findings demonstrate that dl-3n-butylphthalide may have protective effects against diffuse brain injury by ameliorating microcirculation disorder and reducing blood-brain barrier dam- age and cerebral edema.
基金co-funded by Chinese Postdoctoral Science Foundation(2018M640663)the National Natural Science Foundation of China(41474100,41574118,41674131)National Science and Technology Major Project of the Ministry of Science and Technology of China(2017ZX05009-001)
文摘We present systematic investigations on the physics,detection performance and inversion of logging-while-drilling extradeep azimuthal resistivity measurements(EDARM).First,the definitions of EDRAM measurements are discussed,followed by the derivation of the attenuation and phase-shift geometrical factors to illustrate the relative contributions of formation units to the observed signals.Then,a new definition of detection depth,which considers the uncertainty of inversion results caused by the data noise,is proposed to quantify the detection capability of ED ARM.Finally,the B ayesian theory associated with Markov chain Monte Carlo sampling is introduced for fast processing of EDARM data.Numerical results show that ED ARM is capable of detecting the azimuth and distance of remote bed boundaries,and the detection capability increases with increasing spacing and resistivity contrast.The EDARM tool can accommodate a large range of formation resistivity and is able to provide the resistivity anisotropy at arbitrary relative dipping angles.In addition,multiple bed boundaries and reservoir images near the borehole are readily obtained by using the Bayesian inversion.
基金This study was financially supported by the China Geological Survey(Grant Nos.1212011120502,1212011220245,DD20179607,DD20160060)This research was also supported by an Opening fund of GRMR201607 from the State Key Lab of GPMR to A.PolatA.Polat also acknowledges the support by NSERC(Canada)and China University of Geosciences at Wuhan.
文摘The West Junggar orogen,located in the southwestern Central Asian Orogenic Belt(CAOB),preserves an abundant record of tectonic processes associated with the evolution of the Junggar Ocean.In this study,we use detrital zircon U–Pb age data from Ordovician to Carboniferous sandstones in the southern and central West Junggar domains,complemented by literature data,to better constrain the tectonic evolution of the southwestern CAOB.The Kekeshayi,Qiargaye,and Laba formations in the southern West Junggar domain were deposited during the Darriwilian-Sandbian,Katian-Aeronian,and Homerian-Emsian,respectively.Detrital zircon provenances of these formations display a marked shift from the southern West Junggar domain to the Paleo-Kazakhstan Continent(PKC).This suggests that the southern West Junggar intra-oceanic arc might have gradually accreted to the northern margin of the PKC prior to the Emsian,which has significantly contributed to the lateral growth of the PKC.The Carboniferous strata,Xibeikulasi,Baogutu,and Tailegula formations,in the central West Junggar domain represent a coherent sequence of volcaniclastic turbidites and were deposited in a progressively shrinking remnant oceanic basin during the Visean to Moscovian.They contain unimodal detrital zircon distributions and are derived from the local and coeval magmatic rocks in the central West Junggar domain.We propose that the final closure of the Junggar Ocean likely occurred in the end of the Late Carboniferous in response to regional amalgamation events in the southwestern CAOB,which marks the final assembly of the Kazakhstan Orocline.The central and southern West Junggar domains underwent individual evolution in the Paleozoic,and were recombined by the significant intra-continental reworking along the large-scale strike-slip faults.
基金Supported by the National Natural Science Foundation of China(21276132)the Transformation Project of Scientific and Technological Achievements of Qingdao(16-6-2-50-nsh)
文摘Gas–liquid multiphase flow is a significant phenomenon in chemical processes. The rising behaviors of single bubbles in the quiescent liquids have been investigated but the internal flow patterns and deformation rules of bubbles, which influence the mass transfer efficiency to a large extent, have received much less attention. In this paper, the volume of fluid method was used to calculate the bubble shapes, pressure, velocity distributions,and the flow patterns inside the bubbles. The rising behavior of the bubbles with four different initial diameters,i.e., 3 mm, 5 mm, 7 mm and 9 mm was investigated in four various liquids including water, 61.23% glycerol,86.73% glycerol and 100% glycerol. The results show that the liquid properties and bubble initial diameters have great impacts on bubble shapes. Moreover, flow patterns inside the bubbles with different initial diameters were analyzed and classified into three types under the condition of different bubble shapes. Three correlations for predicting the maximum internal circulation inside the bubbles in 86.73% glycerol were presented and the R-square values were all bigger than 0.98. Through analyzing the pressure and velocity distributions around the bubbles, four rules of bubble deformation were also obtained to explain and predict the shapes.
文摘DDX3X is a highly conserved DEAD-box RNA helicase that participates in RNA transcription, RNA splicing, and mRNA transport, translation, and nucleo-cytoplasmic transport. It is highly expressed in metaphase II (MII) oocytes and is the predominant DDX3 variant in the ovary and embryo. However, whether it is important in mouse early embryo development remains unknown. In this study, we investigated the function of DDX3X in early embryogenesis by cytoplasmic microinjection with its siRNA in zygotes or single blastomeres of 2-cell embryos. Our results showed that knockdown of Ddx3x in zygote cytoplasm led to dramatically diminished blastocyst formarion, reduced cell numbers, and an increase in the number of apoptotic cells in blastocysts. Meanwhile, there was an accumulation of p53 in RNAi blastocysts. In addition, the ratio of cell cycle arrest during 2-cell to 4-cell transition increased following microinjection of Ddx3x siRNA into single blastomeres of 2-cell embryos compared with control. These results suggest that Ddx3x is an essential gene associated with cell survival and cell cycle control in mouse early embryos, and thus plays key roles in normal embryo development.