Background:According to previous studies on professional English course teaching,the evaluation of course teaching was positive,but the vast majorities focus on medical English literature reading,professional English ...Background:According to previous studies on professional English course teaching,the evaluation of course teaching was positive,but the vast majorities focus on medical English literature reading,professional English vocabulary,and professional English translation.As an alternative,the course design based on academic learning needs under the outcome-oriented education/model emphasizes the improvement of students'comprehensive ability in oral expression,literature reading,writing,and academic communication.Objectives:The objective of this study was to analyze nursing postgraduates'opinions on learning the outcome-oriented academic English course.Methods:This is a cross-sectional descriptive study.A total of 150 first-year nursing postgraduates enrolled in the“Academic Professional English for Nursing Postgraduates”course.After completing the course learning,students scanned QR codes generated by the online questionnaire and completed it anonymously within 48 h.Results:The students who participated in this course strongly believed that it“helped them strengthen their English speakability”(4.8 points),“made them more confident to participate in international academic conferences and exchanges in the future”(4.8 points),and“helped them apply English more in the nursing professional field in the future”(4.7 points).Conclusions:The implementation of outcome-oriented course teaching helps students to understand the research of foreign scholars and effectively express their own research content with English as a tool.It motivates them to continuously use English for professional and academic communication.展开更多
Current research in broken rotor bar (BRB) fault detection in induction motors is primarily focused on a high-frequency resolution analysis of the stator current. Compared with a discrete Fourier transformation, the...Current research in broken rotor bar (BRB) fault detection in induction motors is primarily focused on a high-frequency resolution analysis of the stator current. Compared with a discrete Fourier transformation, the parametric spectrum estimation technique has a higher frequency accuracy and resolution. However, the existing detection methods based on parametric spectrum estima- tion cannot realize online detection, owing to the large computational cost. To improve the efficiency of BRB fault detection, a new detection method based on the min-norm algorithm and least square estimation is proposed in this paper. First, the stator current is filtered using a band-pass filter and divided into short overlapped data windows. The min-norm algorithm is then applied to determine the fre- quencies of the fundamental and fault characteristic com- ponents with each overlapped data window. Next, based on the frequency values obtained, a model of the fault current signal is constructed. Subsequently, a linear least squares problem solved through singular value decomposition is designed to estimate the amplitudes and phases of the related components. Finally, the proposed method is applied to a simulated current and an actual motor, the results of which indicate that, not only parametric spectrum estimation technique.展开更多
In spectrum analysis of induction motor current, the characteristic components of broken rotor bars(BRB) fault are often submerged by the fundamental component. Although many detection methods have been proposed for...In spectrum analysis of induction motor current, the characteristic components of broken rotor bars(BRB) fault are often submerged by the fundamental component. Although many detection methods have been proposed for this problem, the frequency resolution and accuracy are not high enough so that the reliability of BRB fault detection is a ected. Thus, a new multiple signal classification(MUSIC) algorithm based on particle swarm intelligence search is developed. Since spectrum peak search in MUSIC is a multimodal optimization problem, an improved bare?bones particle swarm optimization algorithm(IBPSO) is proposed first. In the IBPSO, a modified strategy of subpopulation determination is introduced into BPSO for realizing multimodal search. And then, the new MUSIC algorithm, called IBPSO?based MUSIC, is proposed by replacing the fixed?step traversal search with IBPSO. Meanwhile, a simulation signal is used to test the e ectiveness of the proposed algorithm. The simulation results show that its frequency precision reaches 10-5, and the computational cost is only comparable to that of traditional MUSIC with 0.1 search step. Finally, the IBPSO?based MUSIC is applied in BRB fault detection of an induction motor, and the e ectiveness and superiority are proved again. The proposed research provides a modified MUSIC algorithm which has su cient frequency precision to detect BRB fault in induction motors.展开更多
We study the dynamics of the critical collapse of a spherically symmetric scalar field.Approximate analytic expressions for the metric functions and matter field in the large-radius region are obtained.In the central ...We study the dynamics of the critical collapse of a spherically symmetric scalar field.Approximate analytic expressions for the metric functions and matter field in the large-radius region are obtained.In the central region,owing to the boundary conditions,the equation of motion for the scalar field is reduced to the flat-spacetime form.展开更多
In order to investigate the boron removal effect in slag refining process,intermediate frequency furnace was used to purify boron in SiO2-CaO-Na3 AlF6-CaSiO3 slag system at 1,550℃,and back propagation(BP)neural netwo...In order to investigate the boron removal effect in slag refining process,intermediate frequency furnace was used to purify boron in SiO2-CaO-Na3 AlF6-CaSiO3 slag system at 1,550℃,and back propagation(BP)neural network was used to model the relationship between slag compositions and boron content in SiO2-CaO-Na3 AlF6-CaSiO3 slag system.The BP neural network predicted error is below 2.38%.The prediction results show that the slag composition has a significant influence on boron removal.Increasing the basicity of slag by adding CaO or Na3 AlF6 to CaSiO3-based slag could contribute to the boron removal,and the addition of Na3 AlF6 has a better removal effect in comparison with the addition of CaO.The oxidizing characteristic of CaSiO3 results in the ineffective removal with the addition of SiO2.The increase of oxygen potential(pO2)in the CaO-Na3 AlF6-CaSiO3 slag system by varying the SiO2 proportion can also contribute to the boron removal in silicon ingot.The best slag composition to remove boron was predicted by BP neural network using genetic algorithm(GA).The predicted results show that the mass fraction of boron in silicon reduces from 14.0000×10-6 to0.4366×10-6 after slag melting using 23.12%SiO2-10.44%CaO-16.83%Na3 AlF6-49.61%CaSiO3 slag system,close to the experimental boron content in silicon which is below 0.5×10-6.展开更多
基金supported by 2019 Postgraduate Education Quality Improvement Project in Henan ProvinceChina-Quality Course Project and Bilingual teaching demonstration course in School of Nursing and Health,Zhengzhou University。
文摘Background:According to previous studies on professional English course teaching,the evaluation of course teaching was positive,but the vast majorities focus on medical English literature reading,professional English vocabulary,and professional English translation.As an alternative,the course design based on academic learning needs under the outcome-oriented education/model emphasizes the improvement of students'comprehensive ability in oral expression,literature reading,writing,and academic communication.Objectives:The objective of this study was to analyze nursing postgraduates'opinions on learning the outcome-oriented academic English course.Methods:This is a cross-sectional descriptive study.A total of 150 first-year nursing postgraduates enrolled in the“Academic Professional English for Nursing Postgraduates”course.After completing the course learning,students scanned QR codes generated by the online questionnaire and completed it anonymously within 48 h.Results:The students who participated in this course strongly believed that it“helped them strengthen their English speakability”(4.8 points),“made them more confident to participate in international academic conferences and exchanges in the future”(4.8 points),and“helped them apply English more in the nursing professional field in the future”(4.7 points).Conclusions:The implementation of outcome-oriented course teaching helps students to understand the research of foreign scholars and effectively express their own research content with English as a tool.It motivates them to continuously use English for professional and academic communication.
基金Supported by National Natural Science Foundation of China(Grant No.51607180)
文摘Current research in broken rotor bar (BRB) fault detection in induction motors is primarily focused on a high-frequency resolution analysis of the stator current. Compared with a discrete Fourier transformation, the parametric spectrum estimation technique has a higher frequency accuracy and resolution. However, the existing detection methods based on parametric spectrum estima- tion cannot realize online detection, owing to the large computational cost. To improve the efficiency of BRB fault detection, a new detection method based on the min-norm algorithm and least square estimation is proposed in this paper. First, the stator current is filtered using a band-pass filter and divided into short overlapped data windows. The min-norm algorithm is then applied to determine the fre- quencies of the fundamental and fault characteristic com- ponents with each overlapped data window. Next, based on the frequency values obtained, a model of the fault current signal is constructed. Subsequently, a linear least squares problem solved through singular value decomposition is designed to estimate the amplitudes and phases of the related components. Finally, the proposed method is applied to a simulated current and an actual motor, the results of which indicate that, not only parametric spectrum estimation technique.
基金Fundamental Research Funds for the Central Universities(Grant No.2017XKQY032)
文摘In spectrum analysis of induction motor current, the characteristic components of broken rotor bars(BRB) fault are often submerged by the fundamental component. Although many detection methods have been proposed for this problem, the frequency resolution and accuracy are not high enough so that the reliability of BRB fault detection is a ected. Thus, a new multiple signal classification(MUSIC) algorithm based on particle swarm intelligence search is developed. Since spectrum peak search in MUSIC is a multimodal optimization problem, an improved bare?bones particle swarm optimization algorithm(IBPSO) is proposed first. In the IBPSO, a modified strategy of subpopulation determination is introduced into BPSO for realizing multimodal search. And then, the new MUSIC algorithm, called IBPSO?based MUSIC, is proposed by replacing the fixed?step traversal search with IBPSO. Meanwhile, a simulation signal is used to test the e ectiveness of the proposed algorithm. The simulation results show that its frequency precision reaches 10-5, and the computational cost is only comparable to that of traditional MUSIC with 0.1 search step. Finally, the IBPSO?based MUSIC is applied in BRB fault detection of an induction motor, and the e ectiveness and superiority are proved again. The proposed research provides a modified MUSIC algorithm which has su cient frequency precision to detect BRB fault in induction motors.
基金JQG is Supported by the Natural Science Foundation of Shandong Province,China(ZR2019MA068)YH,PPW and CGS are Supported by the National Natural Science Foundation of China(11925503)。
文摘We study the dynamics of the critical collapse of a spherically symmetric scalar field.Approximate analytic expressions for the metric functions and matter field in the large-radius region are obtained.In the central region,owing to the boundary conditions,the equation of motion for the scalar field is reduced to the flat-spacetime form.
基金financially supported by the National High Technology Research and Development Program of China (No.2012AA062302)。
文摘In order to investigate the boron removal effect in slag refining process,intermediate frequency furnace was used to purify boron in SiO2-CaO-Na3 AlF6-CaSiO3 slag system at 1,550℃,and back propagation(BP)neural network was used to model the relationship between slag compositions and boron content in SiO2-CaO-Na3 AlF6-CaSiO3 slag system.The BP neural network predicted error is below 2.38%.The prediction results show that the slag composition has a significant influence on boron removal.Increasing the basicity of slag by adding CaO or Na3 AlF6 to CaSiO3-based slag could contribute to the boron removal,and the addition of Na3 AlF6 has a better removal effect in comparison with the addition of CaO.The oxidizing characteristic of CaSiO3 results in the ineffective removal with the addition of SiO2.The increase of oxygen potential(pO2)in the CaO-Na3 AlF6-CaSiO3 slag system by varying the SiO2 proportion can also contribute to the boron removal in silicon ingot.The best slag composition to remove boron was predicted by BP neural network using genetic algorithm(GA).The predicted results show that the mass fraction of boron in silicon reduces from 14.0000×10-6 to0.4366×10-6 after slag melting using 23.12%SiO2-10.44%CaO-16.83%Na3 AlF6-49.61%CaSiO3 slag system,close to the experimental boron content in silicon which is below 0.5×10-6.