Hydroxyapatite(HAP)porous microspheres with very high specific surface area and drug loading capacity,as well as excellent biocompatibility,have been widely used in tumour therapy.Mg^(2+)is considered to be a key fact...Hydroxyapatite(HAP)porous microspheres with very high specific surface area and drug loading capacity,as well as excellent biocompatibility,have been widely used in tumour therapy.Mg^(2+)is considered to be a key factor in bone regeneration,acting as an active agent to stimulate bone and cartilage formation,and is effective in accelerating cell migration and promoting angiogenesis,which is essential for bone tissue repair,anti-cancer,and anti-infection.In this study,abalone shells from a variety of sources were used as raw materials,and Mg^(2+)-doped abalone shell-derived mesoporous HAP microspheres(Mg-HAP)were prepared by hydrothermal synthesis as Mg^(2+)/icariin smart dual delivery system(ICA-Mg-HAP,IMHA).With increasing of Mg^(2+)doping,the surface morphology of HAP microspheres varied from collapsed macroporous to mesoporous to smooth and non-porous,which may be due to Mg^(2+)substitution or coordination in the HAP lattice.At 30%Mg^(2+)doping,the Mg-HAP microspheres showed a more homogeneous mesoporous morphology with a high specific surface area(186.06 m^(2)/g).The IMHA microspheres showed high drug loading(7.69%)and encapsulation rate(83.29%),sustained Mg^(2+)release for more than 27 days,sustained and stable release of icariin for 60 hours,and good responsiveness to pH(pH 6.4>pH 5.6).In addition,the IMHA delivery system stimulated the rapid proliferation of bone marrow mesenchymal stem cells and induced apoptosis in MG63 cells by blocking the G2 phase cycle of osteosarcoma cells and stimulating the high expression of apoptotic genes(Bcl-2,caspase-3,-8,-9).This suggests that the abalone shell-based IMHA may have potential applications in drug delivery and tumour therapy.展开更多
The regeneration of articular cartilage remains a great challenge due to the difficulty in effectively enhancing spontaneous healing.Recently,the combination of implanted stem cells,suitable biomaterials and bioactive...The regeneration of articular cartilage remains a great challenge due to the difficulty in effectively enhancing spontaneous healing.Recently,the combination of implanted stem cells,suitable biomaterials and bioactive molecules has attracted attention for tissue regeneration.In this study,a novel injectable nanocomposite was rationally designed as a sustained release platform for enhanced cartilage regeneration through integration of a chitosan-based hydrogel,articular cartilage stem cells(ACSCs)and mesoporous SiO_(2)nanoparticles loaded with anhydroicaritin(AHI).The biocompatible engineered nanocomposite acting as a novel 3D biomimetic extracellular matrix exhibited a remarkable sustained release effect due to the synergistic regulation of the organic hydrogel framework and mesopore channels of inorganic mSiO_(2)nanoparticles(mSiO_(2)NPs).Histological assessment and biomechanical tests showed that the nanocomposites exhibited superior performance in inducing ACSCs proliferation and differentiation in vitro and promoting extracellular matrix(ECM)production and cartilage regeneration in vivo.Such a novel multifunctional biocompatible platform was demonstrated to significantly enhance cartilage regeneration based on the sustained release of AHI,an efficient bioactive natural small molecule for ACSCs chondrogenesis,within the hybrid matrix of hydrogel and mSiO_(2)NPs.Hence,the injectable nanocomposite holds great promise for use as a 3D biomimetic extracellular matrix for tissue regeneration in clinical diagnostics.展开更多
To achieve smart and personalized medicine, the development of hydrogel dressings with sensing properties and biotherapeutic properties that can act as a sensor to monitor of human health in real-time while speeding u...To achieve smart and personalized medicine, the development of hydrogel dressings with sensing properties and biotherapeutic properties that can act as a sensor to monitor of human health in real-time while speeding up wound healing face great challenge. In the present study, a biocompatible dual-network composite hydrogel(DNCGel) sensor was obtained via a simple process. The dual network hydrogel is constructed by the interpenetration of a flexible network formed of poly(vinyl alcohol)(PVA) physical cross-linked by repeated freeze-thawing and a rigid network of iron-chelated xanthan gum(XG) impregnated with Fe^(3+) interpenetration. The pure PVA/XG hydrogels were chelated with ferric ions by immersion to improve the gel strength(compressive modulus and tensile modulus can reach up to 0.62 MPa and0.079 MPa, respectively), conductivity(conductivity values ranging from 9 × 10^(-4) S/cm to 1 × 10^(-3)S/cm)and bacterial inhibition properties(up to 98.56%). Subsequently, the effects of the ratio of PVA and XG and the immersion time of Fe^(3+) on the hydrogels were investigated, and DNGel3 was given the most priority on a comprehensive consideration. It was demonstrated that the DNCGel exhibit good biocompatibility in vitro, effectively facilitate wound healing in vivo(up to 97.8% healing rate) under electrical stimulation, and monitors human movement in real time. This work provides a novel avenue to explore multifunctional intelligent hydrogels that hold great promise in biomedical fields such as smart wound dressings and flexible wearable sensors.展开更多
Latent fingerprints are extremely vital for personal identification and criminalinvestigation,and potential information recognition techniques have been widelyused in the fields of information and communication electr...Latent fingerprints are extremely vital for personal identification and criminalinvestigation,and potential information recognition techniques have been widelyused in the fields of information and communication electronics.Although physicalpowder dusting methods have been frequently employed to develop latent fingerprintsand most of them are carried out by using single component powders ofmicron-sized fluorescent particles,magnetic powders,or metal particles,there isstill an enormous challenge in producing high-resolution image of latent fingerprintsat different backgrounds or substrates.Herein,a novel and effectivenanoimpregnation method is developed to synthesize bifunctional magnetic fluorescentmesoporous microspheres for latent fingerprints visualization by growthof mesoporous silica(mesoSiO_(2))on magical Fe_(3)O_(4) core and then deposition offluorescent YVO4:Eu^(3+)nanoparticles in the mesopores.The obtainedFe_(3)O_(4)@mesoSiO_(2)@YVO4:Eu^(3+)microspheres possess spatially isolated magneticcore and fluorescent shell which were insulated by mesoporous silica layer.Dueto their small particle size of submicrometer scale,high magnetization and lowmagnetic remanence as well as the combined magnetic and fluorescent properties,the microspheres show superior performance in visual latent fingerprint recognitionwith high contrast,high anti-interference,and sensitivity as well as goodretention on multifarious substrates regardless of surface permeability,roughness,refraction,colorfulness,and background fluorescence interference,and it makesthem ideal candidates for practical application in fingerprint visualization andeven magneto-optic information storage.展开更多
Magnetic assembly at the nanoscale level brings potential possibilities in obtaining novel delicate nanostructures with unique physical, photonic or electronic properties. Interface surfactant micelle-directed assembl...Magnetic assembly at the nanoscale level brings potential possibilities in obtaining novel delicate nanostructures with unique physical, photonic or electronic properties. Interface surfactant micelle-directed assembly strategy holds great promising in fabricating ordered mesoporous materials with multifunctionality and pore parameter tunability. Combing these, herein, one-dimensional (1D) nanochains with well-aligned silica-coated magnetic particles as core and mesoporous aluminosilicate as shell are rational fabricated for the first time through magnetic field induced interface coassembly in biliquid system followed by the incorporation of Al species via in-situ chemical modification and transformation strategy. The obtained magnetic mesoporous aluminosilicate nanochains (MMAS-NCs) possess well-defined core-shell-shell sandwich nanostructure, tunable perpendicular mesopore channels in the shell (2.7–7.6 nm), high surface area (359 m^(2)·g^(-1)), abundant acidic sites, and superparamagnetism with a magnetization saturation of 13.8 emu·g^(-1). Thanks to the unique properties, the MMAS-NCs exhibit excellent performance in acting as magnetically recyclable superior solid acid catalysts and nanostirrers with high conversion of over 96.8%, selectivity of 95.0% in the deprotection reaction of benzaldehyde dimethylacetal to benzaldehyde. Moreover, MMAS-NCs exhibit an interesting pore size effect on the catalytic activity, namely, in the pore size range of 2–8 nm, the catalysts with larger pores show significantly enhanced catalytic activity due to the balanced mass transport and density of surface active sites.展开更多
Injectable hydrogels have been considered as promising materials for bone regeneration,but their osteoinduction and mechanical performance are yet to be improved.In this study,a novel biocompatible injectable and self...Injectable hydrogels have been considered as promising materials for bone regeneration,but their osteoinduction and mechanical performance are yet to be improved.In this study,a novel biocompatible injectable and self-healing nano hybrid hydrogel was on-demand prepared via a fast(within 30 s)and easy gelation approach by reversible Schiff base formed between-CH=O of oxidized sodium alginate(OSA)and-NH2 of glycol chitosan(GCS)mixed with calcium phosphate nanoparticles(CaP NPs).Its raw materials can be ready in large quantities by a simple synthesis process.The mechanical strength,degradation and swelling behavior of the hydrogel can be readily controlled by simply controlling the molar ratio of-CH=O and-NH2.This hydrogel exhibits pH responsiveness,good degradability and biocompatibility.The hydrogel used as the matrix for mesenchymal stem cells can significantly induce the proliferation,differentiation and osteoinduction in vitro.These results showed this novel hydrogel is an ideal candidate for applications in bone tissue regeneration and drug delivery.展开更多
基金supported by Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2023-23)Shandong Laboratory of Advanced Materials and Green Manufacturing(No.AMGM2021F02)+2 种基金Natural Science Foundation of Shandong Province(Nos.ZR2022QD057,ZR2023MC125)Open Project Fund for Hubei Key Laboratory of Oral and Maxillofacial Development and Regeneration(No.2021kqhm003)China Postdoctoral Science Foundation(Nos.2022M722434,2023T160492).
文摘Hydroxyapatite(HAP)porous microspheres with very high specific surface area and drug loading capacity,as well as excellent biocompatibility,have been widely used in tumour therapy.Mg^(2+)is considered to be a key factor in bone regeneration,acting as an active agent to stimulate bone and cartilage formation,and is effective in accelerating cell migration and promoting angiogenesis,which is essential for bone tissue repair,anti-cancer,and anti-infection.In this study,abalone shells from a variety of sources were used as raw materials,and Mg^(2+)-doped abalone shell-derived mesoporous HAP microspheres(Mg-HAP)were prepared by hydrothermal synthesis as Mg^(2+)/icariin smart dual delivery system(ICA-Mg-HAP,IMHA).With increasing of Mg^(2+)doping,the surface morphology of HAP microspheres varied from collapsed macroporous to mesoporous to smooth and non-porous,which may be due to Mg^(2+)substitution or coordination in the HAP lattice.At 30%Mg^(2+)doping,the Mg-HAP microspheres showed a more homogeneous mesoporous morphology with a high specific surface area(186.06 m^(2)/g).The IMHA microspheres showed high drug loading(7.69%)and encapsulation rate(83.29%),sustained Mg^(2+)release for more than 27 days,sustained and stable release of icariin for 60 hours,and good responsiveness to pH(pH 6.4>pH 5.6).In addition,the IMHA delivery system stimulated the rapid proliferation of bone marrow mesenchymal stem cells and induced apoptosis in MG63 cells by blocking the G2 phase cycle of osteosarcoma cells and stimulating the high expression of apoptotic genes(Bcl-2,caspase-3,-8,-9).This suggests that the abalone shell-based IMHA may have potential applications in drug delivery and tumour therapy.
基金supported by grants from The Ministry of Science and Technology of China(2020YFC2002800)the National Natural Science Foundation of China(81830078,21875044),NO.2021-NCRC-CXJJ-ZH-35 of Clinical Application-oriented Medical Innovation Foundation from National Clinical Research Center for Orthopedics,Sports Medicine&Rehabilitation and Jiangsu China-Israel Industrial Technical Research Institute Foundation,Sino-Swiss collaborative project from Ministry of Science and Technology(2015DFG32200)+1 种基金Science and Technology Commission of Shanghai Municipality(No.19XD1434100,19ZR1433100)Shanghai Jiaotong University“Cross research fund of Medical Engineering”(YG2019ZDA22).
文摘The regeneration of articular cartilage remains a great challenge due to the difficulty in effectively enhancing spontaneous healing.Recently,the combination of implanted stem cells,suitable biomaterials and bioactive molecules has attracted attention for tissue regeneration.In this study,a novel injectable nanocomposite was rationally designed as a sustained release platform for enhanced cartilage regeneration through integration of a chitosan-based hydrogel,articular cartilage stem cells(ACSCs)and mesoporous SiO_(2)nanoparticles loaded with anhydroicaritin(AHI).The biocompatible engineered nanocomposite acting as a novel 3D biomimetic extracellular matrix exhibited a remarkable sustained release effect due to the synergistic regulation of the organic hydrogel framework and mesopore channels of inorganic mSiO_(2)nanoparticles(mSiO_(2)NPs).Histological assessment and biomechanical tests showed that the nanocomposites exhibited superior performance in inducing ACSCs proliferation and differentiation in vitro and promoting extracellular matrix(ECM)production and cartilage regeneration in vivo.Such a novel multifunctional biocompatible platform was demonstrated to significantly enhance cartilage regeneration based on the sustained release of AHI,an efficient bioactive natural small molecule for ACSCs chondrogenesis,within the hybrid matrix of hydrogel and mSiO_(2)NPs.Hence,the injectable nanocomposite holds great promise for use as a 3D biomimetic extracellular matrix for tissue regeneration in clinical diagnostics.
基金supported by Physical Chemical Materials Analytical&Testing Center of Shandong University at Weihai,Natural Science Foundation of Shandong Province(No.ZR2022QD057)Open Project Fund for Hubei Key Laboratory of Oral and Maxillofacial Development and Regeneration(No.2021kqhm003)+1 种基金State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology)the Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing(Yantai,No.AMGM2021F02)。
文摘To achieve smart and personalized medicine, the development of hydrogel dressings with sensing properties and biotherapeutic properties that can act as a sensor to monitor of human health in real-time while speeding up wound healing face great challenge. In the present study, a biocompatible dual-network composite hydrogel(DNCGel) sensor was obtained via a simple process. The dual network hydrogel is constructed by the interpenetration of a flexible network formed of poly(vinyl alcohol)(PVA) physical cross-linked by repeated freeze-thawing and a rigid network of iron-chelated xanthan gum(XG) impregnated with Fe^(3+) interpenetration. The pure PVA/XG hydrogels were chelated with ferric ions by immersion to improve the gel strength(compressive modulus and tensile modulus can reach up to 0.62 MPa and0.079 MPa, respectively), conductivity(conductivity values ranging from 9 × 10^(-4) S/cm to 1 × 10^(-3)S/cm)and bacterial inhibition properties(up to 98.56%). Subsequently, the effects of the ratio of PVA and XG and the immersion time of Fe^(3+) on the hydrogels were investigated, and DNGel3 was given the most priority on a comprehensive consideration. It was demonstrated that the DNCGel exhibit good biocompatibility in vitro, effectively facilitate wound healing in vivo(up to 97.8% healing rate) under electrical stimulation, and monitors human movement in real time. This work provides a novel avenue to explore multifunctional intelligent hydrogels that hold great promise in biomedical fields such as smart wound dressings and flexible wearable sensors.
基金China Postdoctoral Science Foundation,Grant/Award Numbers:2021M690660,2021TQ0066Key Basic Research Program of Science and Technology Commission of Shanghai Municipality,Grant/Award Number:20JC1415300+1 种基金National Natural Science Foundation of China,Grant/Award Numbers:21701153,21875044Program of Shanghai Academic Research Leader,Grant/Award Number:19XD1420300。
文摘Latent fingerprints are extremely vital for personal identification and criminalinvestigation,and potential information recognition techniques have been widelyused in the fields of information and communication electronics.Although physicalpowder dusting methods have been frequently employed to develop latent fingerprintsand most of them are carried out by using single component powders ofmicron-sized fluorescent particles,magnetic powders,or metal particles,there isstill an enormous challenge in producing high-resolution image of latent fingerprintsat different backgrounds or substrates.Herein,a novel and effectivenanoimpregnation method is developed to synthesize bifunctional magnetic fluorescentmesoporous microspheres for latent fingerprints visualization by growthof mesoporous silica(mesoSiO_(2))on magical Fe_(3)O_(4) core and then deposition offluorescent YVO4:Eu^(3+)nanoparticles in the mesopores.The obtainedFe_(3)O_(4)@mesoSiO_(2)@YVO4:Eu^(3+)microspheres possess spatially isolated magneticcore and fluorescent shell which were insulated by mesoporous silica layer.Dueto their small particle size of submicrometer scale,high magnetization and lowmagnetic remanence as well as the combined magnetic and fluorescent properties,the microspheres show superior performance in visual latent fingerprint recognitionwith high contrast,high anti-interference,and sensitivity as well as goodretention on multifarious substrates regardless of surface permeability,roughness,refraction,colorfulness,and background fluorescence interference,and it makesthem ideal candidates for practical application in fingerprint visualization andeven magneto-optic information storage.
基金This work was supported by the National Natural Science Foundation of China(Nos.21701153,21875044,52073064,22005058,and 22005057)the National Key R&D Program of China(No.2020YFB2008600)+4 种基金Program of Shanghai Academic Research Leader(No.19XD1420300)the State Key Laboratory of Transducer Technology of China(No.SKT1904)China Postdoctoral Science Foundation(Nos.2020M670973 and BX20200085)Sichuan Science and Technology Program(No.2020YJ0243)The authors extend their appreciation to the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP-17-94(2).
文摘Magnetic assembly at the nanoscale level brings potential possibilities in obtaining novel delicate nanostructures with unique physical, photonic or electronic properties. Interface surfactant micelle-directed assembly strategy holds great promising in fabricating ordered mesoporous materials with multifunctionality and pore parameter tunability. Combing these, herein, one-dimensional (1D) nanochains with well-aligned silica-coated magnetic particles as core and mesoporous aluminosilicate as shell are rational fabricated for the first time through magnetic field induced interface coassembly in biliquid system followed by the incorporation of Al species via in-situ chemical modification and transformation strategy. The obtained magnetic mesoporous aluminosilicate nanochains (MMAS-NCs) possess well-defined core-shell-shell sandwich nanostructure, tunable perpendicular mesopore channels in the shell (2.7–7.6 nm), high surface area (359 m^(2)·g^(-1)), abundant acidic sites, and superparamagnetism with a magnetization saturation of 13.8 emu·g^(-1). Thanks to the unique properties, the MMAS-NCs exhibit excellent performance in acting as magnetically recyclable superior solid acid catalysts and nanostirrers with high conversion of over 96.8%, selectivity of 95.0% in the deprotection reaction of benzaldehyde dimethylacetal to benzaldehyde. Moreover, MMAS-NCs exhibit an interesting pore size effect on the catalytic activity, namely, in the pore size range of 2–8 nm, the catalysts with larger pores show significantly enhanced catalytic activity due to the balanced mass transport and density of surface active sites.
基金supported by the National Key Research and Development Program of China(No.2017YFC1104102)National Natural Science Foundation of China(Nos.31370958,21875044)+1 种基金Key Program of Natural Science Foundation of Fujian Province(No.2018Y0056)the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP-17-94(2)。
文摘Injectable hydrogels have been considered as promising materials for bone regeneration,but their osteoinduction and mechanical performance are yet to be improved.In this study,a novel biocompatible injectable and self-healing nano hybrid hydrogel was on-demand prepared via a fast(within 30 s)and easy gelation approach by reversible Schiff base formed between-CH=O of oxidized sodium alginate(OSA)and-NH2 of glycol chitosan(GCS)mixed with calcium phosphate nanoparticles(CaP NPs).Its raw materials can be ready in large quantities by a simple synthesis process.The mechanical strength,degradation and swelling behavior of the hydrogel can be readily controlled by simply controlling the molar ratio of-CH=O and-NH2.This hydrogel exhibits pH responsiveness,good degradability and biocompatibility.The hydrogel used as the matrix for mesenchymal stem cells can significantly induce the proliferation,differentiation and osteoinduction in vitro.These results showed this novel hydrogel is an ideal candidate for applications in bone tissue regeneration and drug delivery.