The maize (Zea mays) spikelet consists of two florets, each of which contains three developmentally synchronized anthers. Morphologically, the anthers in the upper and lower florets proceed through apparently simila...The maize (Zea mays) spikelet consists of two florets, each of which contains three developmentally synchronized anthers. Morphologically, the anthers in the upper and lower florets proceed through apparently similar developmental programs. To test for global differences in gene expression and to identify genes that are coordinately regulated during maize anther development, RNA samples isolated from upper and lower floret anthers at six developmental stages were hybridized to cDNA microarrays. Approximately 9% of the tested genes exhibited statistically significant differences in expression between anthers in the upper and lower florets. This finding indicates that several basic biological processes are differentially regulated between upper and lower floret anthers, including metabolism, protein synthesis and signal transduction. Genes that are coordinately regulated across anther development were identified via cluster analysis. Analysis of these results identified stage-specific, early in development, late in development and bi-phasic expression profiles. Quantitative RT-PCR analysis revealed that four genes whose homologs in other plant species are involved in programmed cell death are up-regulated just prior to the time the tapetum begins to visibly degenerate (i.e., the mid-microspore stage). This finding supports the hypothesis that developmentally normal tapetal degeneration occurs via programmed cell death.展开更多
The plant steroid hormones, brassinosteroids (BRs), play important roles in plant growth, development, and responses to environmental stresses. BRs signal through receptors localized to the plasma membrane and other...The plant steroid hormones, brassinosteroids (BRs), play important roles in plant growth, development, and responses to environmental stresses. BRs signal through receptors localized to the plasma membrane and other signaling components to regulate the BES1/BZR1 family of transcription factors, which modulates the expression of thousands of genes. How BESl/BZR1 and their interacting proteins function to regulate the large number of genes are not com- pletely understood. Here we report that histone lysine methyltransferase SDG8, implicated in histone 3 lysine 36 diand trimethylation (H3K36me2 and me3), is involved in BR-regulated gene expression. BES1 interacts with SDG8, directly or indirectly through IWSl, a transcription elongation factor involved in BR-regulated gene expression. The knockout mutant sdg8 displays a reduced growth phenotype with compromised BR responses. Global gene expression studies demonstrated that, while BR regulates about 5000 genes in wild-type plants, the hormone regulates fewer than 700 genes in sdg8 mutant. In addition, more than half of BR-regulated genes are differentially affected in sdg8 mutant. A Chromatin Immunoprecipitation (CHIP) experiment showed that H3K36me3 is reduced in BR-regulated genes in the sdg8 mutant. Based on these results, we propose that SDG8 plays an essential role in mediating BR-regulated gene expression. Our results thus reveal a major mechanism by which histone modifications dictate hormonal regulation of gene expression.展开更多
基金the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service (No 2002-35301-12234 and 2004-35301-14620)Hatch Act and State of Iowa funds
文摘The maize (Zea mays) spikelet consists of two florets, each of which contains three developmentally synchronized anthers. Morphologically, the anthers in the upper and lower florets proceed through apparently similar developmental programs. To test for global differences in gene expression and to identify genes that are coordinately regulated during maize anther development, RNA samples isolated from upper and lower floret anthers at six developmental stages were hybridized to cDNA microarrays. Approximately 9% of the tested genes exhibited statistically significant differences in expression between anthers in the upper and lower florets. This finding indicates that several basic biological processes are differentially regulated between upper and lower floret anthers, including metabolism, protein synthesis and signal transduction. Genes that are coordinately regulated across anther development were identified via cluster analysis. Analysis of these results identified stage-specific, early in development, late in development and bi-phasic expression profiles. Quantitative RT-PCR analysis revealed that four genes whose homologs in other plant species are involved in programmed cell death are up-regulated just prior to the time the tapetum begins to visibly degenerate (i.e., the mid-microspore stage). This finding supports the hypothesis that developmentally normal tapetal degeneration occurs via programmed cell death.
文摘The plant steroid hormones, brassinosteroids (BRs), play important roles in plant growth, development, and responses to environmental stresses. BRs signal through receptors localized to the plasma membrane and other signaling components to regulate the BES1/BZR1 family of transcription factors, which modulates the expression of thousands of genes. How BESl/BZR1 and their interacting proteins function to regulate the large number of genes are not com- pletely understood. Here we report that histone lysine methyltransferase SDG8, implicated in histone 3 lysine 36 diand trimethylation (H3K36me2 and me3), is involved in BR-regulated gene expression. BES1 interacts with SDG8, directly or indirectly through IWSl, a transcription elongation factor involved in BR-regulated gene expression. The knockout mutant sdg8 displays a reduced growth phenotype with compromised BR responses. Global gene expression studies demonstrated that, while BR regulates about 5000 genes in wild-type plants, the hormone regulates fewer than 700 genes in sdg8 mutant. In addition, more than half of BR-regulated genes are differentially affected in sdg8 mutant. A Chromatin Immunoprecipitation (CHIP) experiment showed that H3K36me3 is reduced in BR-regulated genes in the sdg8 mutant. Based on these results, we propose that SDG8 plays an essential role in mediating BR-regulated gene expression. Our results thus reveal a major mechanism by which histone modifications dictate hormonal regulation of gene expression.