期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Sulfur doped iron-nitrogen-hard carbon nanosheets as efficient and robust noble metal-free catalysts for oxygen reduction reaction in PEMFC
1
作者 Bin Liu Jiawang Li +6 位作者 Bowen Yan Qi Wei Xingyu Wen Huarui Xie Huan He pei kang shen Zhi Qun Tian 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期422-433,I0010,共13页
Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membr... Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs).To tackle the issue,herein,a new type of sulfur-doped ironnitrogen-hard carbon(S-Fe-N-HC)nanosheets with high activity and durability in acid media were developed by using a newly synthesized precursor of amide-based polymer with Fe ions based on copolymerizing two monomers of 2,5-thiophene dicarboxylic acid(TDA)as S source and 1,8-diaminonaphthalene(DAN)as N source via an amination reaction.The as-synthesized S-Fe-N-HC features highly dispersed atomic Fe Nxmoieties embedded into rich thiophene-S doped hard carbon nanosheets filled with highly twisted graphite-like microcrystals,which is distinguished from the majority of M-N-C with soft or graphitic carbon structures.These unique characteristics endow S-Fe-N-HC with high ORR activity and outstanding durability in 0.5 M H_(2)SO_(4).Its initial half-wave potential is 0.80 V and the corresponding loss is only 21 m V after 30,000 cycles.Meanwhile,its practical PEMFC performance is a maximum power output of 628.0 mW cm^(-2)and a slight power density loss is 83.0 m W cm^(-2)after 200-cycle practical operation.Additionally,theoretical calculation shows that the activity of Fe Nxmoieties on ORR can be further enhanced by sulfur doping at meta-site near FeN_(4)C.These results evidently demonstrate that the dual effect of hard carbon substrate and S doping derived from the precursor platform of amid-polymers can effectively enhance the activity and durability of Fe-N-C catalysts,providing a new guidance for developing advanced M-N-C catalysts for ORR. 展开更多
关键词 Transition metal-nitrogen-carbon Oxygen reduction reaction Hard carbon Amide based polymer reaction Proton exchange membrane cells
下载PDF
Vanadium-based compounds and heterostructures as functional sulfur catalysts for lithium-sulfur battery cathodes 被引量:3
2
作者 Xinji Dong Qiao Deng +3 位作者 Fengxing Liang pei kang shen Jinliang Zhu Cheng Tang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期118-134,I0003,共18页
Lithium-sulfur(Li-S)batteries have attracted wide attention for their high theoretical energy density,low cost,and environmental friendliness.However,the shuttle effect of polysulfides and the insulation of active mat... Lithium-sulfur(Li-S)batteries have attracted wide attention for their high theoretical energy density,low cost,and environmental friendliness.However,the shuttle effect of polysulfides and the insulation of active materials severely restrict the development of Li-S batteries.Constructing conductive sulfur scaffolds with catalytic conversion capability for cathodes is an efficient approach to solving above issues.Vanadium-based compounds and their heterostructures have recently emerged as functional sulfur catalysts supported on conductive scaffolds.These compounds interact with polysulfides via different mechanisms to alleviate the shuttle effect and accelerate the redox kinetics,leading to higher Coulombic efficiency and enhanced sulfur utilization.Reports on vanadium-based nanomaterials in Li-S batteries have been steadily increasing over the past several years.In this review,first,we provide an overview of the synthesis of vanadium-based compounds and heterostructures.Then,we discuss the interactions and constitutive relationships between vanadium-based catalysts and polysulfides formed at sulfur cathodes.We summarize the mechanisms that contribute to the enhancement of electrochemical performance for various types of vanadium-based catalysts,thus providing insights for the rational design of sulfur catalysts.Finally,we offer a perspective on the future directions for the research and development of vanadium-based sulfur catalysts. 展开更多
关键词 Vanadium-based compound Vanadium-based heterostructure Lithium-sulfur battery Sulfur catalyst Polysulfide regulation
下载PDF
Hierarchically skeletal multi-layered Pt-Ni nanocrystals for highly efficient oxygen reduction and methanol oxidation reactions 被引量:6
3
作者 Shibo Li Zhi Qun Tian +5 位作者 Yang Liu Zheng Jang Syed Waqar Hasan Xingfa Chen Panagiotis Tsiakaras pei kang shen 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第4期648-657,共10页
Pt based materials are the most efficient electrocatalysts for the oxygen reduction reaction(ORR)and methanol oxidation reaction(MOR)in fuel cells.Maximizing the utilization of Pt based materials by modulating their m... Pt based materials are the most efficient electrocatalysts for the oxygen reduction reaction(ORR)and methanol oxidation reaction(MOR)in fuel cells.Maximizing the utilization of Pt based materials by modulating their morphologies to expose more active sites is a fundamental objective for the practical application of fuel cells.Herein,we report a new class of hierarchically skeletal Pt-Ni nanocrystals(HSNs)with a multi-layered structure,prepared by an inorganic acid-induced solvothermal method.The addition of H_(2)SO_(4)to the synthetic protocol provides a critical trigger for the successful growth of Pt-Ni nanocrystals with the desired structure.The Pt-Ni HSNs synthesized by this method exhibit enhanced mass activity of 1.25 A mgpt−1 at 0.9 V(versus the reversible hydrogen electrode)towards ORR in 0.1-M HClO_(4),which is superior to that of Pt-Ni multi-branched nanocrystals obtained by the same method in the absence of inorganic acid;it is additionally 8.9-fold higher than that of the commercial Pt/C catalyst.Meanwhile,it displays enhanced stability,with only 21.6%mass activity loss after 10,000 cycles(0.6–1.0 V)for ORR.Furthermore,the Pt-Ni HSNs show enhanced activity and anti-toxic ability in CO for MOR.The superb activity of the Pt-Ni HSNs for ORR and MOR is fully attributed to an extensively exposed electrochemical surface area and high intrinsic activity,induced by strain effects,provided by the unique hierarchically skeletal alloy structure.The novel open and hierarchical structure of Pt-Ni alloy provides a promising approach for significant improvements of the activity of Pt based alloy electrocatalysts. 展开更多
关键词 Hierarchically skeletal Pt-Ni NANOCRYSTALS SELF-ASSEMBLY Solvent thermal method Oxygen reduction reaction Methanol oxidation reaction Fuel cells ACTIVITY
下载PDF
Nonprecious metal's graphene-supported electrocatalysts for hydrogen evolution reaction: Fundamentals to applications 被引量:19
4
作者 Asad Ali pei kang shen 《Carbon Energy》 CAS 2020年第1期99-121,共23页
Sustainable production of hydrogen is a hopeful requirement of a strategic future economy and development.Water splitting driven by electricity is a favorable pathway for renewable hydrogen production.This critical re... Sustainable production of hydrogen is a hopeful requirement of a strategic future economy and development.Water splitting driven by electricity is a favorable pathway for renewable hydrogen production.This critical review highlighted recent efforts toward the development of the nanoscale synthesis of nonprecious metal's graphene-supported electrocatalysts and their electrocatalytic features for remarkable hydrogen evolution reaction(HER).Different essential nonprecious metal's graphene-supported electrocatalysts,including metal carbides,sulfides,phosphides,selenides,oxides,and nitrides are reviewed.In the exploration,attention is given to the strategies of activity enhancement,the synthetic approach,and the composition/structure electrocatalytic-performance relationship of these HER electrocatalysts.We are hopeful that this review confers a new momentum to the rational design of remarkable performance nonprecious metal's graphenesupported electrocatalysts and comprehensive guide for researchers to utilize the subject catalysts in regular water splitting. 展开更多
关键词 GRAPHENE hydrogen evolution reaction nonprecious metal electrocatalysts water splitting
下载PDF
High-performance proton exchange membrane fuel cell with ultra-low loading Pt on vertically aligned carbon nanotubes as integrated catalyst layer 被引量:3
5
作者 Qing Hao Meng Chao Hao +4 位作者 Bowen Yan Bin Yang Jia Liu pei kang shen Zhi Qun Tian 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期497-506,I0013,共11页
Reducing a Pt loading with improved power output and durability is essential to promote the large-scale application of proton exchange membrane fuel cells(PEMFCs).To achieve this goal,constructing optimized structure ... Reducing a Pt loading with improved power output and durability is essential to promote the large-scale application of proton exchange membrane fuel cells(PEMFCs).To achieve this goal,constructing optimized structure of catalyst layers with efficient mass transportation channels plays a vital role.Herein,PEMFCs with order-structured cathodic electrodes were fabricated by depositing Pt nanoparticles by Ebeam onto vertically aligned carbon nanotubes(VACNTs)growth on Al foil via plasma-enhanced chemical vapor deposition.Results demonstrate that the proportion of hydrophilic Pt-deposited region along VACNTs and residual hydrophobic region of VANCTs without Pt strongly influences the cell performance,in particular at high current densities.When Pt nanoparticles deposit on the top depth of around 600 nm on VACNTs with a length of 4.6μm,the cell shows the highest performance,compared with others with various lengths of VACNTs.It delivers a maximum power output of 1.61 W cm^(-2)(H_(2)/O_(2),150 k Pa)and 0.79 W cm^(-2)(H_(2)/Air,150 k Pa)at Pt loading of 50μg cm^(-2),exceeding most of previously reported PEMFCs with Pt loading of<100μg cm^(-2).Even though the Pt loading is down to 30μg cm^(-2)(1.36 W cm^(-2)),the performance is also better than 100μg cm^(-2)(1.24 W cm^(-2))of commercial Pt/C,and presents better stability.This excellent performance is critical attributed to the ordered hydrophobic region providing sufficient mass passages to facilitate the fast water drainage at high current densities.This work gives a new understanding for oxygen reduction reaction occurred in VACNTs-based ordered electrodes,demonstrating the most possibility to achieve a substantial reduction in Pt loading<100μg cm^(-2) without sacrificing in performance. 展开更多
关键词 Proton exchange membrane fuel cells Order-structured catalyst layer Vertically aligned carbon nanotubes Ultra-low Pt loading Membrane electrode assembly
下载PDF
High-quality and deeply excavated PtPdNi nanocubes as efficient catalysts toward oxygen reduction reaction 被引量:1
6
作者 Yanjie Li Rifeng Wu +2 位作者 Yang Liu Ying Wen pei kang shen 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第5期772-780,共9页
The oxygen reduction reaction(ORR)on the cathode of a polymer electrolyte fuel cell requires the use of a catalyst based on Pt,one of the most expensive metals on the earth.A number of strategies,including optimizatio... The oxygen reduction reaction(ORR)on the cathode of a polymer electrolyte fuel cell requires the use of a catalyst based on Pt,one of the most expensive metals on the earth.A number of strategies,including optimization of a different metal into the core,have been investigated to enhance the activity of a Pt-based catalyst and thus reduce the loading of Pt.By dedicating to compounding high catalytic activity Pt_(2.7)Pd_(0.3)Ni concave cubic with high index crystal face,the paper shows that concave structures can offer more active site and high level of catalytic activity and if mixed with other metal,decrease the proportion of Pt and improve its mass activity.The paper also makes an exploration into the theory and conditions behind the formation of Pt_(2.7)Pd_(0.3)Ni concave cubic structure,and investigates the difference it demonstrates by modifying the reactive conditions.The results of the oxygen reduction performance of the electrochemical test are as follows:the concave cube-shaped Pt-Pd-Ni catalyst has a mass activity of 1.28 A mg_(Pt)^(–1) at 0.9 V,its highest mass activity is 8.20 times that of commercial Pt/C,and its specific activity is 8.68 times of that commercial Pt/C.And the Pt-Pd-Ni ternary nanocage has excellent structural invariance.After the stability test,there is no obvious structural change and performance degradation in the nanostructure. 展开更多
关键词 Oxygen reduction reaction Polymer electrolyte fuel cells Concave cubic structure Electrochemical catalyst
下载PDF
Emerging strategies and developments in oxygen reduction reaction using high-performance platinum-based electrocatalysts 被引量:1
7
作者 Asad Ali Aatto Laaksonen +6 位作者 Guo Huang Shahid Hussain Shuiping Luo Wen Chen pei kang shen Jinliang Zhu Xiaoyan Ji 《Nano Research》 SCIE EI CSCD 2024年第5期3516-3532,共17页
The global practical implementation of proton exchange membrane fuel cells(PEMFCs)heavily relies on the advancement of highly effective platinum(Pt)-based electrocatalysts for the oxygen reduction reaction(ORR).To ach... The global practical implementation of proton exchange membrane fuel cells(PEMFCs)heavily relies on the advancement of highly effective platinum(Pt)-based electrocatalysts for the oxygen reduction reaction(ORR).To achieve high ORR performance,electrocatalysts with highly accessible reactive surfaces are needed to promote the uncovering of active positions for easy mass transportation.In this critical review,we introduce different approaches for the emerging development of effective ORR electrocatalysts,which offer high activity and durability.The strategies,including morphological engineering,geometric configuration modification via supporting materials,alloys regulation,core-shell,and confinement engineering of single atom electrocatalysts(SAEs),are discussed in line with the goals and requirements of ORR performance enhancement.We review the ongoing development of Pt electrocatalysts based on the syntheses,nanoarchitecture,electrochemical performances,and stability.We eventually explore the obstacles and research directions on further developing more effective electrocatalysts. 展开更多
关键词 oxygen reduction reaction(ORR) Pt-based electrocatalysts proton exchange membrane fuel cells(PEMFCs) morphology and alloys strategies single atom electrocatalysts(SAEs)
原文传递
Phase-controllable cobalt phosphide heterostructure for efficient electrocatalytic hydrogen evolution in water and seawater
8
作者 Guo Huang Yujin Huang +4 位作者 Asad Ali Zhijie Chen pei kang shen Bing-Jie Ni Jinliang Zhu 《Electron》 2024年第3期20-30,共11页
Cobalt phosphides attract broad attention as alternatives to platinumbased materials towards hydrogen evolution reaction(HER).The catalytic performance of cobalt phosphides largely depends on the phase structure,but f... Cobalt phosphides attract broad attention as alternatives to platinumbased materials towards hydrogen evolution reaction(HER).The catalytic performance of cobalt phosphides largely depends on the phase structure,but figuring out the optimal phase towards HER remains challenging due to their diverse stoichiometries.In our work,a series of cobalt phosphide nanoparticles with different phase structures but similar particle sizes(CoP-Co_(2)P,Co_(2)P-Co,Co_(2)P,and CoP)on a porous carbon network(PC)were accurately synthesized.The CoP-Co_(2)P/PC heterostructure demonstrates upgraded HER catalytic activity with a low overpotential of 96.7 and 162.1 mV at 10 mA cm−2 in 1 M KOH and 1 M phosphate-buffered saline solution,respectively,with a long-term(120 h)durability.In addition,the CoP-Co_(2)P/PC exhibits good HER performance in alkaline seawater,with a small overpotential of 111.2 mV at 10 mA cm^(−2) and a low Tafel slope of 64.2 mV dec^(−1),as well as promising stability.Density functional theory results show that the Co_(2)P side of the CoP-Co_(2)P/PC heterostructure has the best Gibbs free energy of each step for HER,which contributes to the high HER activity.This study sets the stage for the advancement of high-performance HER electrocatalysts and the implementation of large-scale seawater electrolysis. 展开更多
关键词 cobalt phosphides ELECTROCATALYSTS heterostructures porous carbon seawater electrolysis
原文传递
Rational synthesis of chitin-derived nitrogen-doped porous carbon nanofibers for efficient polysulfide confinement 被引量:2
9
作者 Shanfeng Yang Shuiping Luo +3 位作者 Xinji Dong Li Tian pei kang shen Jinliang Zhu 《Nano Research》 SCIE EI CSCD 2023年第6期8478-8487,共10页
Principles of inexpensive biotechnology are being increasingly used to address the problems posed by the use of lithium-sulfur batteries.We used chitin,a low-cost marine biowaste product,as a precursor for the in-situ... Principles of inexpensive biotechnology are being increasingly used to address the problems posed by the use of lithium-sulfur batteries.We used chitin,a low-cost marine biowaste product,as a precursor for the in-situ preparation of chitin-derived nitrogendoped hierarchical porous carbon fibers(CNHPCFs)containing abundant pores.These materials are characterized by varying morphologies and high specific surface areas and present a hierarchical porous structure.CNHPCFs adsorb polysulfides,exhibit good ionic conductivity,and can be potentially used to generate green energy.These properties help address the problems of volume expansion and slow transport.The CNHPCF-1@S cathode exhibits excellent cycling performance and high capacity(1368.80 mAh·g^(−1)at 0.2 C;decay rate:0.011%per turn at 5 C).The high electrochemical reversibility recorded for CNHPCF-1@S and the stepwise reaction mechanism followed were studied using the in-situ X-ray diffraction and in-situ Raman spectroscopy techniques.The results reported herein can potentially help develop new ideas for the recycling and treatment of marine biofertilizers.The results can also provide a platform to improve the application prospects of lithium-sulfur batteries. 展开更多
关键词 CHITIN carbon fiber Li-S battery in-situ Raman in-situ X-ray diffraction
原文传递
Recent development of Au arched Pt nanomaterials as promising electrocatalysts for methanol oxidation reaction 被引量:4
10
作者 Wenhua Lou Asad Ali pei kang shen 《Nano Research》 SCIE EI CSCD 2022年第1期18-37,共20页
The recent development of Aurum(Au)introduced Platinum(Pt)based nanomaterials is of great significance to direct methanol fuel cell as electrocatalysts for anode reactions,due to its stability and anti-poisoning featu... The recent development of Aurum(Au)introduced Platinum(Pt)based nanomaterials is of great significance to direct methanol fuel cell as electrocatalysts for anode reactions,due to its stability and anti-poisoning features.Therefore,the performance of PtAu based catalysts with different elements,atomic ratio,and morphology was studied in methanol solution to further improve its electrocatalytic activity.Furthermore,the effects of Au have aroused the researchers'attention in Pt-based nanocatalysts.In this review,we summarize the controllable synthesis,mechanism,and catalytic performance of Au introduced Pt-based electrocatalysts such as PtAu core-shell nanostructures,PtAu dendrite,PtAu nanowires,self-supporting Au@Pt NPs,and Au@Pt star-like nanocrystals for the methanol oxidation reaction.Finally,the challenges and research directions for the future development of PtAu based catalysts are provided. 展开更多
关键词 methanol oxidation reaction(MOR) direct methanol fuel cell(DMFC) PtAu based catalysts anode catalysts ELECTROCATALYSIS
原文传递
In situ carbon nanotube clusters grown from three- dimensional porous graphene networks as efficient sulfur hosts for high-rate ultra-stable Li-S batteries 被引量:4
11
作者 Shizhi Huang Lingli Zhang +2 位作者 Jingyan Wang Jinliang Zhu pei kang shen 《Nano Research》 SCIE EI CAS CSCD 2018年第3期1731-1743,共13页
Carbon nanotube (CNT) clusters grown in situ in three-dimensional (3D) porous graphene networks (3DG-CNTs), with integrated structure and remarkable electronic conductivity, are desirable S host materials for Li... Carbon nanotube (CNT) clusters grown in situ in three-dimensional (3D) porous graphene networks (3DG-CNTs), with integrated structure and remarkable electronic conductivity, are desirable S host materials for Li-S batteries. 3DG-CNT exhibits a high surface area (1,645 m^2·g^-1), superior electronic conductivity of 1,055 S·m^-1, and a 3D porous networked structure. Large clusters of CNTs anchored on the inner walls of 3D graphene networks act as capillaries, benefitting restriction of agglomeration by high contents of immersed S. Moreover, the capillary-like CNT clusters grown in situ in the pores efficiently form restricted spaces for Li polysulfides, significantly reducing the shuttling effect and promoting S utilization throughout the charge/discharge process. With an areal S mass loading of 81.6 wt.%, the 3DG-CNT/S electrode exhibits an initial specific capacity reaching 1,229 mA·h·g^-1 at 0.5 C and capacity decays of 0.044% and 0.059% per cycle at 0.5 and 1 C, respectively, over 500 cycles. The electrode material also reveals a remarkable rate performance and the large capacity of 812 mA·h·g^-1 at 3 C. 展开更多
关键词 in situ growth carbon nanotube three-dimensional (3D)graphene porous network Li-S battery
原文传递
Innovative Strategies for Overall Water Splitting Using Nanostructured Transition Metal Electrocatalysts 被引量:3
12
作者 Asad Ali Fei Long pei kang shen 《Electrochemical Energy Reviews》 SCIE EI 2022年第4期286-315,共30页
Electrochemical water splitting is regarded as the most auspicious technology for renewable sources,transport,and storage of hydrogen energy.Currently,noble Pt metal and noble-metal oxides(IrO_(2)and RuO_(2))are recog... Electrochemical water splitting is regarded as the most auspicious technology for renewable sources,transport,and storage of hydrogen energy.Currently,noble Pt metal and noble-metal oxides(IrO_(2)and RuO_(2))are recognized as state-of-the-art electrocatalysts for both the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER),respectively.Searching for earth-abundant electrocatalysts for the HER and OER with remarkable performance and high stability to replace precious metals plays a significant role in the commercial application of electrochemical water splitting.In this review,recent advancements in nanostructured transition metal electrocatalysts are assessed through the selected examples of nitrides,carbides,phosphides,sulfides,borides,layered double hydroxides,and oxides.Recent breakthroughs in nanostructured transition metal electrocatalysts are discussed in terms of their mechanisms,controllable production,structural design,and innovative strategies for boosting their performance.For instance,most nanostructured transition metal electrocatalysts for overall water splitting(OWS)only function well in neutral and alkaline solutions.Finally,current research challenges and future perspectives for increasing the performance of nanostructured transition metals for OWS are proposed. 展开更多
关键词 Hydrogen evolution reaction(HER) Oxygen evolution reaction(OER) Overall water splitting(OWS) Transition metal electrocatalyst Innovative strategies Basic electrochemistry
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部