A sediment core(YJK19-02)collected from the southern outlet of Hangzhou Bay near the Yongjiang River estuary in East China was analyzed for grain size,lignin,bulk elemental composition,stable carbon isotope,and rare e...A sediment core(YJK19-02)collected from the southern outlet of Hangzhou Bay near the Yongjiang River estuary in East China was analyzed for grain size,lignin,bulk elemental composition,stable carbon isotope,and rare earth elements(REEs)to determine the sources and diagenesis of sedimentary organic matter(OM)of the estuary and adjacent areas since the Late Pleistocene.δ^(13)C values(-24.80‰–-23.60‰),total organic carbon/total nitrogen(TOC/TN)molar ratios(8.00–12.14),and light rare earth element/heavy rare earth element ratios(LREE/HREE=8.34–8.91)revealed the predominance of terrestrial sources of OM,mainly from the Changjiang(Yangtze)River.The lignin parameters of syringyl/vanillyl(S/V=0.20–0.73)and cinnamyl/vanillyl(C/V=0.03–0.19)ratios indicate the predominance of nonwoody angiosperms,and the vanillic acid/vanillin ratios[(Ad/Al)_(V)=0.32–1.57]indicate medium to high degrees of lignin degradation.An increasing trend ofΛ(total lignin in mg/100-mg OC)values from ca.14500 a BP to ca.11000 a BP reflected the increase in temperature during the Late Pleistocene.However,a time lag effect of temperature on vegetation abundance was also revealed.The relatively higher and stableΛvalues correspond to the higher temperature during the mid-Holocene from ca.8500 a BP to ca.4500 a BP.Λvalues decreased from ca.4000 a BP to the present,corresponding to historical temperature fluctuations during this time.Our results show that the vegetation abundance in the Yongjiang River Basin since the Late Pleistocene was related to the temperature fluctuation duo to climate change.展开更多
Salt marshes are important carbon and nutrient sinks that are threatened by climate changes and human activities.In this study,the accumulation rates of sedimentary total organic carbon(TOC),total nitrogen(TN),and tot...Salt marshes are important carbon and nutrient sinks that are threatened by climate changes and human activities.In this study,the accumulation rates of sedimentary total organic carbon(TOC),total nitrogen(TN),and total phosphorus(TP)from two cores in the Andong salt marsh,Hangzhou Bay,were investigated to determine whether TOC,TN,and TP show increasing or decreasing trends toward the present.The TOC accumulation rates at the relatively lower marsh were lower during 1990-1996(1.63-2.37 g/(cm^(2)·a))than 1997-2014(1.15-4.30 g/(cm^(2)·a)).The TN accumulation rates increased from 1990(0.14 g/(cm^(2)·a))toward 2012(0.40 g/(cm^(2)·a)),then decreased toward 2014(0.16 g/(cm^(2)·a)).The TP accumulation rates were lower during 1990-1999(0.10-0.21 mg/(cm^(2)·a)),and decreased from 2000(0.32 mg/(cm^(2)·a))toward 2014(0.15 mg/(cm^(2)·a)).The TOC accumulation rates along the relatively upper marsh during 1982-1992(1.18-3.25 g/(cm^(2)·a))were lower than during 1998-2010(2.30-4.20 g/(cm^(2)·a)),and then decreased toward 2015(2.15 g/(cm^(2)·a)).TN increased from 1982(0.18 g/(cm^(2)·a))to 2005(0.41 g/(cm^(2)·a)),then decreased toward 2015(0.22 g/(cm^(2)·a)).TP accumulation rates fluctuated within a narrow range during 1982-1997(0.21-0.41 mg/(cm^(2)·a)),increased from 1998(0.50 mg/(cm^(2)·a))to 2004(0.87 mg/(cm^(2)·a)),then decreased to 2015(0.38 mg/(cm^(2)·a)).Thus,increases in accumulation rates of TOC,TN,and TP from the 1980s to 1990s indicates that the marsh likely served as carbon and nutrient sinks,then the rates decreased during 2000-2015 due probably to the reduced sediment inputs from rivers and intensified sea level rise.展开更多
In this study, a comparison was made between the Changjiang Estuary and the Hanghzou Bay, in terms of the sources and diagenesis of the sedimentary organic matter (OM). To achieve this purpose, surface sediments from ...In this study, a comparison was made between the Changjiang Estuary and the Hanghzou Bay, in terms of the sources and diagenesis of the sedimentary organic matter (OM). To achieve this purpose, surface sediments from the estuary and bay were analyzed for lignin-derived phenols, stable carbon isotope and TOC/TN (total organic carbon/total nitrogen) molar ratio. The signal of land-derived OM decreased, and the vanillic acid to vanillin ratio, (Ad/Al)v, increased with increasing distance from the Changjiang Estuary and the Hangzhou Bay. These results corresponded with the contribution of the terrigenous OM from the rivers to the coastal zone, and the predominance of marine OM farther offshore, and that the land-derived OM underwent decomposition during transport along the estuary and bay. It should be noted that besides the Qiantang River, Hangzhou Bay is also receiving more than half of its materials from Changjiang Estuary, which flows into the Hangzhou Bay at the north, and leaves via the southern part of the bay. This important aspect of the hydrological cycle in Hangzhou Bay corresponded to higher Λ (total lignin in mg/100 mg OC), higher TOC and C/N ratios and more elevated (Ad/Al)v and (Ad/Al)s values in the bay than the Changjiang Estuary, thus, rendering the bay as a site for the accumulation and rapid cycling of terrigenous OM.展开更多
In this study, lignin-derived phenols were used to determine the sources and distribution of sedimentary organic matter along the northern Bering Sea and Chukchi Sea of the Arctic Ocean. The lignin parameter syringyl/...In this study, lignin-derived phenols were used to determine the sources and distribution of sedimentary organic matter along the northern Bering Sea and Chukchi Sea of the Arctic Ocean. The lignin parameter syringyl/vanillyl(S/V) and cinnamyl/vanillyl(C/V) ratios are used to indicate vegetation sources; and the ratios of vanillic acid/vanillin,(Ad/Al)v and syringic acid/syringaldehyde,(Ad/Al)s are used as indicators of lignin diagenesis. Results showed the predominance of woody gymnosperm signal at the easternmost location in the northern Bering Sea, a mixture of refractory non-woody angiosperm and fresher gymnosperm tissues in the Chukchi Sea, and signal of fresher woody gymnosperm tissues in the northernmost locations in the Chukchi Sea. The lignin materials showed gradual increase in decomposition stage during transport along the northern Bering Sea. Hydrodynamic sorting process, which is the retention of coarser materials nearshore and transportation of finer particles farther offshore, most probably occurred along the east coast of the northern Bering Sea. In Chukchi Sea, the non-woody angiosperm tissues could have originated from the Canadian Arctic and gymnosperm tissues could be from the Russian Arctic side. The fresher materials in the northernmost Chukchi Sea could have been transported here via the ice-rafting process.Detection of fresh lignin materials and the occurrence of lignin decomposition mean that this region could be sensitive to the impact of climate change.展开更多
基金Supported by the China Institute of Water Resources and Hydropower Research(No.K20231586)the Water Conservancy Bureau of Yunyang County(No.YYX24C00008)+1 种基金the Ecological Forestry Development Center of Lishui City(No.2021ZDZX03)the Asia-Pacific Network for Global Change Research(No.CRRP2020-06MY-Loh)。
文摘A sediment core(YJK19-02)collected from the southern outlet of Hangzhou Bay near the Yongjiang River estuary in East China was analyzed for grain size,lignin,bulk elemental composition,stable carbon isotope,and rare earth elements(REEs)to determine the sources and diagenesis of sedimentary organic matter(OM)of the estuary and adjacent areas since the Late Pleistocene.δ^(13)C values(-24.80‰–-23.60‰),total organic carbon/total nitrogen(TOC/TN)molar ratios(8.00–12.14),and light rare earth element/heavy rare earth element ratios(LREE/HREE=8.34–8.91)revealed the predominance of terrestrial sources of OM,mainly from the Changjiang(Yangtze)River.The lignin parameters of syringyl/vanillyl(S/V=0.20–0.73)and cinnamyl/vanillyl(C/V=0.03–0.19)ratios indicate the predominance of nonwoody angiosperms,and the vanillic acid/vanillin ratios[(Ad/Al)_(V)=0.32–1.57]indicate medium to high degrees of lignin degradation.An increasing trend ofΛ(total lignin in mg/100-mg OC)values from ca.14500 a BP to ca.11000 a BP reflected the increase in temperature during the Late Pleistocene.However,a time lag effect of temperature on vegetation abundance was also revealed.The relatively higher and stableΛvalues correspond to the higher temperature during the mid-Holocene from ca.8500 a BP to ca.4500 a BP.Λvalues decreased from ca.4000 a BP to the present,corresponding to historical temperature fluctuations during this time.Our results show that the vegetation abundance in the Yongjiang River Basin since the Late Pleistocene was related to the temperature fluctuation duo to climate change.
基金Supported by the Zhejiang University Self Program Fund for the Research of Heavy Metal Geochemical Characteristics in Sediments of Hangzhou Baythe Zhejiang University Fundamental Research Funds for the Central Universities(No.2013QNA4037)+1 种基金the National Key Research and Development Plan of China(No.2016YFC1401603)the National Natural Science Foundation of China(No.41876031)。
文摘Salt marshes are important carbon and nutrient sinks that are threatened by climate changes and human activities.In this study,the accumulation rates of sedimentary total organic carbon(TOC),total nitrogen(TN),and total phosphorus(TP)from two cores in the Andong salt marsh,Hangzhou Bay,were investigated to determine whether TOC,TN,and TP show increasing or decreasing trends toward the present.The TOC accumulation rates at the relatively lower marsh were lower during 1990-1996(1.63-2.37 g/(cm^(2)·a))than 1997-2014(1.15-4.30 g/(cm^(2)·a)).The TN accumulation rates increased from 1990(0.14 g/(cm^(2)·a))toward 2012(0.40 g/(cm^(2)·a)),then decreased toward 2014(0.16 g/(cm^(2)·a)).The TP accumulation rates were lower during 1990-1999(0.10-0.21 mg/(cm^(2)·a)),and decreased from 2000(0.32 mg/(cm^(2)·a))toward 2014(0.15 mg/(cm^(2)·a)).The TOC accumulation rates along the relatively upper marsh during 1982-1992(1.18-3.25 g/(cm^(2)·a))were lower than during 1998-2010(2.30-4.20 g/(cm^(2)·a)),and then decreased toward 2015(2.15 g/(cm^(2)·a)).TN increased from 1982(0.18 g/(cm^(2)·a))to 2005(0.41 g/(cm^(2)·a)),then decreased toward 2015(0.22 g/(cm^(2)·a)).TP accumulation rates fluctuated within a narrow range during 1982-1997(0.21-0.41 mg/(cm^(2)·a)),increased from 1998(0.50 mg/(cm^(2)·a))to 2004(0.87 mg/(cm^(2)·a)),then decreased to 2015(0.38 mg/(cm^(2)·a)).Thus,increases in accumulation rates of TOC,TN,and TP from the 1980s to 1990s indicates that the marsh likely served as carbon and nutrient sinks,then the rates decreased during 2000-2015 due probably to the reduced sediment inputs from rivers and intensified sea level rise.
文摘In this study, a comparison was made between the Changjiang Estuary and the Hanghzou Bay, in terms of the sources and diagenesis of the sedimentary organic matter (OM). To achieve this purpose, surface sediments from the estuary and bay were analyzed for lignin-derived phenols, stable carbon isotope and TOC/TN (total organic carbon/total nitrogen) molar ratio. The signal of land-derived OM decreased, and the vanillic acid to vanillin ratio, (Ad/Al)v, increased with increasing distance from the Changjiang Estuary and the Hangzhou Bay. These results corresponded with the contribution of the terrigenous OM from the rivers to the coastal zone, and the predominance of marine OM farther offshore, and that the land-derived OM underwent decomposition during transport along the estuary and bay. It should be noted that besides the Qiantang River, Hangzhou Bay is also receiving more than half of its materials from Changjiang Estuary, which flows into the Hangzhou Bay at the north, and leaves via the southern part of the bay. This important aspect of the hydrological cycle in Hangzhou Bay corresponded to higher Λ (total lignin in mg/100 mg OC), higher TOC and C/N ratios and more elevated (Ad/Al)v and (Ad/Al)s values in the bay than the Changjiang Estuary, thus, rendering the bay as a site for the accumulation and rapid cycling of terrigenous OM.
基金supported by the National Natural Science Foundation of China(Nos.41276198 and 41406217)the Chinese Polar Environmental Comprehensive Investigation&Assessment Programs(CHINARE 2014-04-01-07,CHINARE 2014-02-01-05)+1 种基金the Chinese Polar Science Strategy Research Foundation(No.20120104)the Zhejiang University Fundamental Research Funds for the Central Universities 2013QNA4037
文摘In this study, lignin-derived phenols were used to determine the sources and distribution of sedimentary organic matter along the northern Bering Sea and Chukchi Sea of the Arctic Ocean. The lignin parameter syringyl/vanillyl(S/V) and cinnamyl/vanillyl(C/V) ratios are used to indicate vegetation sources; and the ratios of vanillic acid/vanillin,(Ad/Al)v and syringic acid/syringaldehyde,(Ad/Al)s are used as indicators of lignin diagenesis. Results showed the predominance of woody gymnosperm signal at the easternmost location in the northern Bering Sea, a mixture of refractory non-woody angiosperm and fresher gymnosperm tissues in the Chukchi Sea, and signal of fresher woody gymnosperm tissues in the northernmost locations in the Chukchi Sea. The lignin materials showed gradual increase in decomposition stage during transport along the northern Bering Sea. Hydrodynamic sorting process, which is the retention of coarser materials nearshore and transportation of finer particles farther offshore, most probably occurred along the east coast of the northern Bering Sea. In Chukchi Sea, the non-woody angiosperm tissues could have originated from the Canadian Arctic and gymnosperm tissues could be from the Russian Arctic side. The fresher materials in the northernmost Chukchi Sea could have been transported here via the ice-rafting process.Detection of fresh lignin materials and the occurrence of lignin decomposition mean that this region could be sensitive to the impact of climate change.