Objective:To explore the relationship of plasma homocysteine(Hcy),soluble intercellular adhesion molecule-1(sICAM-1)and high mobility group box 1 protein(HMGB1)with carotid intima-media thickness(c-IMT)in elderly pati...Objective:To explore the relationship of plasma homocysteine(Hcy),soluble intercellular adhesion molecule-1(sICAM-1)and high mobility group box 1 protein(HMGB1)with carotid intima-media thickness(c-IMT)in elderly patients with type 2 diabetes mellitus.Methods:A total of 100 elderly patients who were diagnosed as type 2 diabetes mellitus in Baogang Hospital of Inner Mongolia from June 2017 to May 2020 were chosen as research objects.According to c-IMT,they were divided into the normal group(n=35),the mild to moderate group(n=41)and the severe group(n=24).The expression levels of plasma Hcy,sICAM-1 and HMGB1 were compared between groups respectively.Pearson’s correlation coefficient was used to analyze the relationship of plasma Hcy,sICAM-1,HMGB1 with c-IMT.Results:The comparison in plasma Hcy,sICAM-1,HMGB1 and c-IMT among the three groups of patients was of statistical significance(p<.05).The results of correlation analysis showed that the expression levels of plasma Hcy,sICAM-1 and HMGB1 were positively correlated with c-IMT in elderly patients with type 2 diabetes mellitus(r=.627,.598,.614;p<.05).Conclusions:The expression levels of plasma Hcy,sICAM-1 and HMGB1 are abnormally increased in elderly patients with type 2 diabetes mellitus,and related to c-IMT,which can provide a strong evidence for clinical diagnosis and treatment by detecting their levels in clinical practice.展开更多
Functional van der Waals(vdWs)heterostructures based on layered materials have shown tremendous potential in next-generation optoelectronic devices.To date,numerous vdWs heterostructures have been investigated based o...Functional van der Waals(vdWs)heterostructures based on layered materials have shown tremendous potential in next-generation optoelectronic devices.To date,numerous vdWs heterostructures have been investigated based on stacking or epitaxial growth technology.However the complicated synthesis process greatly limits the large-scale integration of the heterostructure device array,which is essential for practical applications.Here,a planar photodetector array with an out-of-plane vertical In2Se3/SnSe2heterostructure as the photosensitive channel was self-assembled through a pulsed laser deposition(PLD)technique.The vertical built-in field was exploited to suppress the dark current and separate the photogenerated carriers.The realized devices possess an ultralow dark current of 6.3 p A,combined with a high detectivity of 8.8×1011Jones and a high signal-to-noise ratio(SNR)beyond 3×104.These performance metrics not only are one order of magnitude superior to pure In2Se3device,but also demonstrate the unique advantage of detecting weak signals.In addition,this heterostructure photodetector array can further be constructed on flexible polyimide(PI)substrate.These flexible devices also demonstrate effective light detection capability and the photoresponse remains unchanged even after 200 cycles of bending.These findings pave a way toward the development of next-generation large area and high integration optoelectronic technologies.展开更多
文摘Objective:To explore the relationship of plasma homocysteine(Hcy),soluble intercellular adhesion molecule-1(sICAM-1)and high mobility group box 1 protein(HMGB1)with carotid intima-media thickness(c-IMT)in elderly patients with type 2 diabetes mellitus.Methods:A total of 100 elderly patients who were diagnosed as type 2 diabetes mellitus in Baogang Hospital of Inner Mongolia from June 2017 to May 2020 were chosen as research objects.According to c-IMT,they were divided into the normal group(n=35),the mild to moderate group(n=41)and the severe group(n=24).The expression levels of plasma Hcy,sICAM-1 and HMGB1 were compared between groups respectively.Pearson’s correlation coefficient was used to analyze the relationship of plasma Hcy,sICAM-1,HMGB1 with c-IMT.Results:The comparison in plasma Hcy,sICAM-1,HMGB1 and c-IMT among the three groups of patients was of statistical significance(p<.05).The results of correlation analysis showed that the expression levels of plasma Hcy,sICAM-1 and HMGB1 were positively correlated with c-IMT in elderly patients with type 2 diabetes mellitus(r=.627,.598,.614;p<.05).Conclusions:The expression levels of plasma Hcy,sICAM-1 and HMGB1 are abnormally increased in elderly patients with type 2 diabetes mellitus,and related to c-IMT,which can provide a strong evidence for clinical diagnosis and treatment by detecting their levels in clinical practice.
基金supported by the National Natural Science Foundation of China(61805044 and 11674310)the Key Platforms and Research Projects of Department of Education of Guangdong Province(2018KTSCX050)“The Pearl River Talent Recruitment Program”。
文摘Functional van der Waals(vdWs)heterostructures based on layered materials have shown tremendous potential in next-generation optoelectronic devices.To date,numerous vdWs heterostructures have been investigated based on stacking or epitaxial growth technology.However the complicated synthesis process greatly limits the large-scale integration of the heterostructure device array,which is essential for practical applications.Here,a planar photodetector array with an out-of-plane vertical In2Se3/SnSe2heterostructure as the photosensitive channel was self-assembled through a pulsed laser deposition(PLD)technique.The vertical built-in field was exploited to suppress the dark current and separate the photogenerated carriers.The realized devices possess an ultralow dark current of 6.3 p A,combined with a high detectivity of 8.8×1011Jones and a high signal-to-noise ratio(SNR)beyond 3×104.These performance metrics not only are one order of magnitude superior to pure In2Se3device,but also demonstrate the unique advantage of detecting weak signals.In addition,this heterostructure photodetector array can further be constructed on flexible polyimide(PI)substrate.These flexible devices also demonstrate effective light detection capability and the photoresponse remains unchanged even after 200 cycles of bending.These findings pave a way toward the development of next-generation large area and high integration optoelectronic technologies.