We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in...We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in S_(v)–In_(2)S_(3)@2H–MoTe_(2).The X-ray absorption near-edge structure shows that the formation of S_(v)–In_(2)S_(3)@2H–MoTe_(2) adjusts the coordination environment via interface engineering and forms Mo–S polarized sites at the interface.The interfacial dynamics and catalytic behavior are clearly revealed by ultrafast femtosecond transient absorption,time-resolved,and in situ diffuse reflectance–Infrared Fourier transform spectroscopy.A tunable electronic structure through steric interaction of Mo–S bridging bonds induces a 1.7-fold enhancement in S_(v)–In_(2)S_(3)@2H–MoTe_(2)(5)photogenerated carrier concentration relative to pristine S_(v)–In_(2)S_(3).Benefiting from lower carrier transport activation energy,an internal quantum efficiency of 94.01%at 380 nm was used for photocatalytic CO_(2)RR.This study proposes a new strategy to design photocatalyst through bridging sites to adjust the selectivity of photocatalytic CO_(2)RR.展开更多
Chemical doping is a critical factor in the development of new superconductors or optimizing the superconducting transition temperature(T_(c))of the parent superconducting materials.Here,a new simple urea approach is ...Chemical doping is a critical factor in the development of new superconductors or optimizing the superconducting transition temperature(T_(c))of the parent superconducting materials.Here,a new simple urea approach is developed to synthesize the N-dopedα-Mo_(2)C.Benefiting from the simple urea method,a broad superconducting dome is found in the Mo_(2)C_(1−x)N_(x)(0≤x≤0.49)compositions.X-ray diffraction results show that the structure of𝛼α-Mo_(2)C remains unchanged and there is a variation of lattice parameters with nitrogen doping.Resistivity,magnetic susceptibility,and heat capacity measurement results confirm that T_(c)was strongly increased from 2.68K(x=0)to 7.05K(x=0.49).First-principles calculations and our analysis indicate that increasing nitrogen doping leads to a rise in the density of states at the Fermi level and doping-induced phonon softening,which enhances electron–phonon coupling.This results in an increase in𝑇T_(c)and a sharp rise in the upper critical field.Our findings provide a promising strategy for fabricating transition metal carbonitrides and provide a material platform for further study of the superconductivity of transition metal carbides.展开更多
Here we report a TiHfNbTa bulk medium-entropy alloy(MEA)superconductor crystallized in the body-centered cubic structure with the unit cell parameter a=3.35925?,which is synthesized by an arc melting method.Supercondu...Here we report a TiHfNbTa bulk medium-entropy alloy(MEA)superconductor crystallized in the body-centered cubic structure with the unit cell parameter a=3.35925?,which is synthesized by an arc melting method.Superconducting properties of the TiHfNbTa are studied by employing magnetic susceptibility,resistivity,and specific heat measurements.Experimental results show a bulk superconducting transition temperature(Tc)of around 6.75 K.The lower and upper critical fields for TiHfNbTa are45.8 m T and 10.46 T,respectively.First-principles calculations show that the d electrons of Ti,Hf,Nb,and Ta are the main contribution to the total density of states near the Fermi level.Our results indicate that the superconductivity is a conventional swave type with extremely strong coupling(△C_(el)/γ_(n)T_(c)=2.88,2△_(0)/k_(B)T_(c)=5.02,and λ_(ep)=2.77).The extremely strong coupling behavior in the s-wave type Ti Hf Nb Ta MEA superconductor is unusual because it generally happens in cuprates,pnictides,and other unconventional superconductors.展开更多
Spectral emissivity is an essential and sensitive parameter to characterize the radiative capacity of the solid surface in scientific and engineering applications,which would be non-negligibly affected by surface morp...Spectral emissivity is an essential and sensitive parameter to characterize the radiative capacity of the solid surface in scientific and engineering applications,which would be non-negligibly affected by surface morphology.However,there is a lack of assessment of the effect of roughness on emissivity and a straightforward method for estimating the emissivity of rough surfaces.This paper established an estimating method based on constructing random rough surfaces to predict rough surface(Geometric region)emissivity for metal solids.Based on this method,the emissivity of ideal gray and non-gray body surfaces was calculated and analyzed.The calculated and measured spectral emissivities of GH3044,K465,DD6,and TC4 alloys with different roughness were compared.The results show that the emissivity increases with the roughness degree,and the enhancement effect weakens with the increase of roughness or emissivity due to the existing limit(emissivityε=1.0).At the same time,the roughness would not change the overall spectral distribution characteristics but may attenuate the local features of the spectral emissivity.The estimated results are in good agreement with the experimental data for the above alloys'rough surfaces.This study provides a new reliable approach to obtaining the spectral emissivity of rough surfaces.This approach is especially beneficial for measuring objects in extreme environments where emissivity is difficult to obtain.Meanwhile,this study promotes an understanding of surface morphology's effect mechanism on emissivity.展开更多
基金the Natural Science Foundation of China(11922415,12274471)Guangdong Basic and Applied Basic Research Foundation(2022A1515011168,2019A1515011718,2019A1515011337)the Key Research and Development Program of Guangdong Province,China(2019B110209003).
文摘We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in S_(v)–In_(2)S_(3)@2H–MoTe_(2).The X-ray absorption near-edge structure shows that the formation of S_(v)–In_(2)S_(3)@2H–MoTe_(2) adjusts the coordination environment via interface engineering and forms Mo–S polarized sites at the interface.The interfacial dynamics and catalytic behavior are clearly revealed by ultrafast femtosecond transient absorption,time-resolved,and in situ diffuse reflectance–Infrared Fourier transform spectroscopy.A tunable electronic structure through steric interaction of Mo–S bridging bonds induces a 1.7-fold enhancement in S_(v)–In_(2)S_(3)@2H–MoTe_(2)(5)photogenerated carrier concentration relative to pristine S_(v)–In_(2)S_(3).Benefiting from lower carrier transport activation energy,an internal quantum efficiency of 94.01%at 380 nm was used for photocatalytic CO_(2)RR.This study proposes a new strategy to design photocatalyst through bridging sites to adjust the selectivity of photocatalytic CO_(2)RR.
基金supported by the National Natural Science Foundation of China(Grant Nos.12274471 and 11922415)Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515011168)+3 种基金the Key Research&Development Program of Guangdong Province,China(Grant No.2019B110209003)the Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices(Grant Nos.2022B1212010008)Lingyong Zeng was supported by the Postdoctoral Fellowship Program of CPSF(Grant Nos.GZC20233299)Fundamental Research Funds for the Central Universities,Sun Yat-Sen University(Grant Nos.29000-31610058)。
文摘Chemical doping is a critical factor in the development of new superconductors or optimizing the superconducting transition temperature(T_(c))of the parent superconducting materials.Here,a new simple urea approach is developed to synthesize the N-dopedα-Mo_(2)C.Benefiting from the simple urea method,a broad superconducting dome is found in the Mo_(2)C_(1−x)N_(x)(0≤x≤0.49)compositions.X-ray diffraction results show that the structure of𝛼α-Mo_(2)C remains unchanged and there is a variation of lattice parameters with nitrogen doping.Resistivity,magnetic susceptibility,and heat capacity measurement results confirm that T_(c)was strongly increased from 2.68K(x=0)to 7.05K(x=0.49).First-principles calculations and our analysis indicate that increasing nitrogen doping leads to a rise in the density of states at the Fermi level and doping-induced phonon softening,which enhances electron–phonon coupling.This results in an increase in𝑇T_(c)and a sharp rise in the upper critical field.Our findings provide a promising strategy for fabricating transition metal carbonitrides and provide a material platform for further study of the superconductivity of transition metal carbides.
基金supported by the National Natural Science Foundation of China(Grant Nos.12274471,and 11922415)the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2022A1515011168,and 2019A1515011718)+6 种基金the Key Research and Development Program of Guangdong Province,China(Grant No.2019B110209003)supported by the Foreign Young Talents Program of China(Grant No.22KW041C211)supported by the Key-Area Research and Development Program of Guangdong Province(Grant No.2020B0101340002)supported by the NKRDPC(Grant Nos.2022YFA1402802,and 2018YFA0306001)the National Natural Science Foundation of China(Grant Nos.11974432,and 92165204)the Leading Talent Program of Guangdong Special Projects(Grant No.201626003)the Shenzhen International Quantum Academy(Grant No.SIQA202102)。
文摘Here we report a TiHfNbTa bulk medium-entropy alloy(MEA)superconductor crystallized in the body-centered cubic structure with the unit cell parameter a=3.35925?,which is synthesized by an arc melting method.Superconducting properties of the TiHfNbTa are studied by employing magnetic susceptibility,resistivity,and specific heat measurements.Experimental results show a bulk superconducting transition temperature(Tc)of around 6.75 K.The lower and upper critical fields for TiHfNbTa are45.8 m T and 10.46 T,respectively.First-principles calculations show that the d electrons of Ti,Hf,Nb,and Ta are the main contribution to the total density of states near the Fermi level.Our results indicate that the superconductivity is a conventional swave type with extremely strong coupling(△C_(el)/γ_(n)T_(c)=2.88,2△_(0)/k_(B)T_(c)=5.02,and λ_(ep)=2.77).The extremely strong coupling behavior in the s-wave type Ti Hf Nb Ta MEA superconductor is unusual because it generally happens in cuprates,pnictides,and other unconventional superconductors.
基金funded by the Department of Science and Technology of Sichuan Province(Nos.2021JDTD0030,2022JDJQ0033,and 2022012)the National Natural Science Foundation of China(Nos.U20A20213 and 62275059)+2 种基金the National Science and Technology Major Project(J2019-V-0006-0100)Young Elite Scientists Sponsorship Program by CAST(No.2019QNRC001)the Chengdu Science and Technology Project(No.2020-GH02-0065-HZ).
文摘Spectral emissivity is an essential and sensitive parameter to characterize the radiative capacity of the solid surface in scientific and engineering applications,which would be non-negligibly affected by surface morphology.However,there is a lack of assessment of the effect of roughness on emissivity and a straightforward method for estimating the emissivity of rough surfaces.This paper established an estimating method based on constructing random rough surfaces to predict rough surface(Geometric region)emissivity for metal solids.Based on this method,the emissivity of ideal gray and non-gray body surfaces was calculated and analyzed.The calculated and measured spectral emissivities of GH3044,K465,DD6,and TC4 alloys with different roughness were compared.The results show that the emissivity increases with the roughness degree,and the enhancement effect weakens with the increase of roughness or emissivity due to the existing limit(emissivityε=1.0).At the same time,the roughness would not change the overall spectral distribution characteristics but may attenuate the local features of the spectral emissivity.The estimated results are in good agreement with the experimental data for the above alloys'rough surfaces.This study provides a new reliable approach to obtaining the spectral emissivity of rough surfaces.This approach is especially beneficial for measuring objects in extreme environments where emissivity is difficult to obtain.Meanwhile,this study promotes an understanding of surface morphology's effect mechanism on emissivity.