期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
DIA-based proteome profiling with PRM verification reveals the involvement of ER-associated protein processing in pollen abortion in Ogura CMS cabbage
1
作者 peiwen wang Lin Zhu +5 位作者 Ziheng Li Mozhen Cheng Xiuling Chen Aoxue wang Chao wang Xiaoxuan Zhang 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第3期755-770,共16页
Ogura cytoplasmic male sterility(Ogura CMS)is extensively applied in hybrid seed production in cruciferous crops.However,the posttranscriptional molecular basis of Ogura CMS in cruciferous crops remains elusive.Here,a... Ogura cytoplasmic male sterility(Ogura CMS)is extensively applied in hybrid seed production in cruciferous crops.However,the posttranscriptional molecular basis of Ogura CMS in cruciferous crops remains elusive.Here,a data-independent acquisition-based proteomic approach coupled with a parallel reaction monitoring-based targeted proteomic assay was used to analyze the proteome dynamics of Ogura CMS cabbage line RM and its maintainer line RF during floral bud development to obtain insights into the mechanism underlying Ogura CMS in cruciferous crops.A total of 9162 proteins corresponding to 61464 peptides were identified in RM and RF floral buds.The proteomic fluctuation of RM was weaker than that of RF.Differences in protein expression between RM and RF gradually enlarged with floral bud development.Fifteen continually up-regulated and eight continually down-regulated proteins were found in RM relative to RF throughout floral bud development.Differentially expressed proteins between RM and RF during floral bud development were implicated in the endoplasmic reticulum(ER)-associated protein processing pathway,in which most of them exhibited down-regulated expression in RM.These data suggest that ER-associated protein processing may be involved in pollen abortion in Ogura CMS cabbage by inhibiting the expression of critical factors.Our findings not only deepen the understanding of the molecular mechanisms of Ogura CMS in cruciferous crops but also provide better guidance for applying Ogura CMS in the hybrid breeding of cruciferous crops. 展开更多
关键词 Ogura cytoplasmic male sterility(Ogura CMS) CABBAGE Data-independent acquisition(DIA) Parallel reaction monitoring(PRM) Pollen development
下载PDF
The transcription factor SlHY5 regulates the ripening of tomato fruit at both the transcriptional and translational levels 被引量:12
2
作者 Weihao wang peiwen wang +3 位作者 Xiaojing Li Yuying wang Shiping Tian Guozheng Qin 《Horticulture Research》 SCIE 2021年第1期939-953,共15页
Light plays a critical role in plant growth and development,but the mechanisms through which light regulates fruit ripening and nutritional quality in horticultural crops remain largely unknown.Here,we found that ELON... Light plays a critical role in plant growth and development,but the mechanisms through which light regulates fruit ripening and nutritional quality in horticultural crops remain largely unknown.Here,we found that ELONGATED HYPOCOTYL 5(HY5),a master regulator in the light signaling pathway,is required for normal fruit ripening in tomato(Solanum lycopersicum).Loss of function of tomato HY5(SlHY5)impairs pigment accumulation and ethylene biosynthesis.Transcriptome profiling identified 2948 differentially expressed genes,which included 1424 downregulated and 1524 upregulated genes,in the Slhy5 mutants.In addition,genes involved in carotenoid and anthocyanin biosynthesis and ethylene signaling were revealed as direct targets of SlHY5 by chromatin immunoprecipitation.Surprisingly,the expression of a large proportion of genes encoding ribosomal proteins was downregulated in the Slhy5 mutants,and this downregulation pattern was accompanied by a decrease in the abundance of ribosomal proteins.Further analysis demonstrated that SlHY5 affected the translation efficiency of numerous ripening-related genes.These data indicate that SlHY5 regulates fruit ripening both at the transcriptional level by targeting specific molecular pathways and at the translational level by affecting the protein translation machinery.Our findings unravel the regulatory mechanisms of SlHY5 in controlling fruit ripening and nutritional quality and uncover the multifaceted regulation of gene expression by transcription factors. 展开更多
关键词 HY5 TRANSCRIPTIONAL TRANSLATIONAL
下载PDF
带叔胺的两亲嵌段共聚物的合成及其载光敏剂胶束用于光疗抗菌 被引量:1
3
作者 王佩文 欧阳耀文 +2 位作者 刘原铖 周良芹 罗祥林 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2022年第2期147-155,共9页
光照杀菌具有精准可控、不会使细菌产生耐药性的特点,同时细菌微环境显酸性、细菌细胞壁带负电。针对上述特性,设计并合成了能在细菌微酸中质子化的两亲聚合物聚乙二醇单甲醚-b-聚(2-(二乙氨基)甲基丙烯酸乙酯)和聚乙二醇单甲醚-b-聚(... 光照杀菌具有精准可控、不会使细菌产生耐药性的特点,同时细菌微环境显酸性、细菌细胞壁带负电。针对上述特性,设计并合成了能在细菌微酸中质子化的两亲聚合物聚乙二醇单甲醚-b-聚(2-(二乙氨基)甲基丙烯酸乙酯)和聚乙二醇单甲醚-b-聚(甲基丙烯酸羟乙酯-co-甲基丙烯酸二乙氨基乙酯)(分别记为PD和PHD),将其胶束包载光敏剂IR780和白藜芦醇(RES)并用于光照杀菌。采用核磁、红外对聚合物结构进行了表征。用动态光散射仪、透射电子显微镜、紫外光谱和荧光光谱对空白和载IR780/RES胶束的粒径、粒径分布、表面电荷、形貌以及载药量等性质进行了表征。结果表明,PD或PHD及载药胶束均呈现球形结构,包载IR780/RES双药时,载药量明显比单独包载IR780时增加。载药胶束808 nm光照对金黄色葡萄球菌(S.aureus)和大肠杆菌(E.coli)的杀菌率均在99%及以上。PD胶束减弱IR780光漂白的效果略优于PHD,两者均可用于多次光照杀菌。 展开更多
关键词 聚合物胶束 微环境响应 光动-光热联合治疗 抗菌
下载PDF
CuS-PNIPAm nanoparticles with the ability to initiatively capture bacteria for photothermal treatment of infected skin 被引量:1
4
作者 Zizhen wang Zishuo Hou +2 位作者 peiwen wang Fan Chen Xianglin Luo 《Regenerative Biomaterials》 SCIE EI 2022年第1期347-359,共13页
Copper sulfide nanoparticles(CuS NPs)have shown great potential in various application fields,especially in biomedical engineering fields.CuS NPs,with the ability to actively capture and kill bacteria and without the ... Copper sulfide nanoparticles(CuS NPs)have shown great potential in various application fields,especially in biomedical engineering fields.CuS NPs,with the ability to actively capture and kill bacteria and without the worry of biocompatibility,will greatly expand their applications.Herein,a four-arm star thermosensitive polyisopropylacrylamide(4sPNIPAm)was used to modify CuS NPs(CuS-PNIPAm NPs).The obtained NPs displayed the controlled release of copper ions and higher photothermal conversion ability in comparison with contrast materials CuS-PEG NPs and CuS NPs.Aggregation of CuS-PNIPAm NPs at above 34℃resulted in capturing bacteria by forming the aggregates of NPs-bacteria.Both Staphylococcus aureus and Escherichia coli co-cultured with CuS-PNIPAm NPs were completely killed upon near-infrared irradiation in minutes.Furthermore,CuS-PNIPAm NPs were verified to be a photothermal agent without toxic effect.In in vivo experiment,the NPs effectively killed the bacteria in the wound and accelerated the process of wound repairment.Overall,photothermal treatment by CuS-PNIPAm NPs demonstrates the ability to actively capture and kill bacteria,and has a potential in the treatment of infected skin and the regeneration of skin tissues.The therapy will exert a far-reaching impact on the regeneration of stubborn chronic wounds. 展开更多
关键词 capturing bacteria wound healing acceleration photothermal ablation ion-controlled release
原文传递
Genome-wide binding analysis of the tomato transcription factor SlDof1 reveals its regulatory impacts on fruit ripening
5
作者 Yuying wang peiwen wang +3 位作者 Weihao wang Lingxi Kong Shiping Tian Guozheng Qin 《Molecular Horticulture》 2021年第1期90-107,共18页
The DNA binding with one finger(Dof)proteins are plant-specific transcription factors involved in a variety of biological processes.However,little is known about their functions in fruit ripening,a flowering-plant-spe... The DNA binding with one finger(Dof)proteins are plant-specific transcription factors involved in a variety of biological processes.However,little is known about their functions in fruit ripening,a flowering-plant-specific process that is required for seed maturation and dispersal.Here,we found that the tomato Dof transcription factor SlDof1,is necessary for normal fruit ripening.Knockdown of SlDof1 expression by RNA interference delayed ripening-related processes,including lycopene synthesis and ethylene production.Transcriptome profiling indicated that SlDof1 influences the expression of hundreds of genes,and a chromatin immunoprecipitation sequencing revealed a large number of SlDof1 binding sites.A total of 312 genes were identified as direct targets of SlDof1,among which 162 were negatively regulated by SlDof1 and 150 were positively regulated.The SlDof1 target genes were involved in a variety of metabolic pathways,and follow-up analyses verified that SlDof1 directly regulates some well-known ripening-related genes including ACS2 and PG2A as well as transcriptional repressor genes such as SlIAA27.Our findings provide insights into the transcriptional regulatory networks underlying fruit ripening and highlight a gene potentially useful for genetic engineering to control ripening. 展开更多
关键词 TOMATO Fruit ripening Transcriptional regulation DNA binding with one finger(Dof) chromatin immunoprecipitation followed by sequencing(ChIP-seq) RNA sequencing(RNA-seq)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部