Odor pollution in landfill area has attracted more social attention in China. It is very important to control the generation of odor pollutants in situ. Analyzing odorous materials production form buried waste, simula...Odor pollution in landfill area has attracted more social attention in China. It is very important to control the generation of odor pollutants in situ. Analyzing odorous materials production form buried waste, simulated columns of different volatile solid (VS) content and different buried period waste were designed. Gas compounds produced from the columns were collected and analyzed by comprehensive two-dimensional gas chromatography (GC × GC) method. It has remarkable relationship between VS content and concentrations of odorous material. When VS content more than 40%, the total amount of odorous compounds increases remarkably. It can be inferred that reduced VS content of original waste may effective decreasing odorous materials production in landfill area. The old rubbish produced more odorous compounds than that of fresh one in simulated columns.展开更多
It is a challenge to make thorough but efficient experimental designs for the coupled mineral dissolution and precipitation studies in a multi-mineral system, because it is difficult to speculate the best experimental...It is a challenge to make thorough but efficient experimental designs for the coupled mineral dissolution and precipitation studies in a multi-mineral system, because it is difficult to speculate the best experimental duration, optimal sampling schedule, effects of different experimental conditions, and how to maximize the experimental outputs prior to the actual experiments. Geochemical modeling is an efficient and effective tool to assist the experimental design by virtually running all scenarios of interest for the studied system and predicting the experimental outcomes. Here we demonstrated an example of geochemical modeling assisted experimental design of coupled labradorite dissolution and calcite and clayey mineral precipitation using multiple isotope tracers. In this study, labradorite(plagioclase) was chosen as the reactant because it is both a major component and one of the most reactive minerals in basalt. Following our isotope doping studies of single minerals in the last ten years, initial solutions in the simulations were doped withmultiple isotopes(e.g., Ca and Si). Geochemical modeling results show that the use of isotope tracers gives us orders of magnitude more sensitivity than the conventional method based on concentrations and allows us to decouple dissolution and precipitation reactions at near-equilibrium condition. The simulations suggest that the precise unidirectional dissolution rates can inform us which rate laws plagioclase dissolution has followed. Calcite precipitation occurred at near-equilibrium and the multiple isotope tracer experiments would provide near-equilibrium precipitation rates, which was a challenge for the conventional concentration-based experiments. In addition, whether the precipitation of clayey phases is the rate-limiting step in some multi-mineral systems will be revealed. Overall, the modeling results of multimineral reaction kinetics will improve the understanding of the coupled dissolution–precipitation in the multi-mineral systems and the quality of geochemical modeling prediction of CO_(2) removal and storage efficacy in the basalt systems.展开更多
This paper explores how dissolution and precipitation reactions are coupled in batch reactor experimental systems at elevated temperatures. This is the fifth paper in our series of ‘‘Coupled Alkali Feldspar Dissolut...This paper explores how dissolution and precipitation reactions are coupled in batch reactor experimental systems at elevated temperatures. This is the fifth paper in our series of ‘‘Coupled Alkali Feldspar Dissolution and Secondary Mineral Precipitation in Batch Systems.'' In the previous four papers we presented batch experiments of alkali-feldspar hydrolysis and explored the coupling of dissolution and precipitation reactions(Fu et al. in Chem Geol91:955–964, 2009; Zhu and Lu in Geochim Cosmochim Acta 73:3171–3200, 2009; Zhu et al.in Geochim Cosmochim Acta 74:3963–3983, 2010; Lu et al. in Appl Geochem30:75–90, 2013). Here, we present the results of additionalK-rich feldspar hydrolysis experiments at 150 °C. Our solution chemistry measurements have constrained feldspar dissolution rates, and our high resolution transmission electron microscopy work has identified boehmite precipitation. Reaction path modeling of K-feldspar dissolution and boehmite precipitation simulated the coupled reactions, but only with forced changes of boehmite rate law in the middle of experimental duration. The results which are reported in this article lend further support to our hypothesis that slow secondary mineral precipitation explains part of the wellknown apparent discrepancy between lab measured and field estimated feldspar dissolution rates(Zhu et al. in Water–rock interaction, 2004).展开更多
The friction pull plug welding(FPPW)of the 2219-T87 tungsten inert gas(TIG)welded joint was investigated,and the microstructures,precipitate evolution,mechanical properties,and fracture morphologies of this joint were...The friction pull plug welding(FPPW)of the 2219-T87 tungsten inert gas(TIG)welded joint was investigated,and the microstructures,precipitate evolution,mechanical properties,and fracture morphologies of this joint were analyzed and discussed.In this study,defectfree joints were obtained using a rotational speed of 7000 r/min,an axial feeding displacement of 12 mm,and an axial force of 20-22 kN.The results indicated that within these welding parameters,metallurgical bonding between the plug and plate is achieved by the formation of recrystallized grains.The microstructural features of the FPPW joint can be divided into different regions,including the heat-affected zone(HAZ),thermomechanically affected zone(TMAZ),recrystallization zone(RZ),heat-affected zone in the TIG weld(TIG-HAZ),and the thermomechanically affected zone in the TIG weld(TIG-TMAZ).In the TIG-TMAZ,the grains were highly deformed and elongated due to the shear and the extrusion that produces the plug during the FPPW process.The main reason for the softening in the TMAZ is determined to be the dissolution ofθ’and coarsening ofθprecipitate particles.In a tensile test,the FPPW joint welded with an axial force of 22 kN showed the highest ultimate tensile strength of 237 MPa.The locations of cracks and factures in the TIG-TMAZ were identified.The fracture morphology of the tensile sample showed good plasticity and toughness of the joints.展开更多
BACKGROUND Serum small extracellular vesicles(sEVs)and their small RNA(sRNA)cargoes could be promising biomarkers for the diagnosis of liver injury.However,the dynamic changes in serum sEVs and their sRNA components d...BACKGROUND Serum small extracellular vesicles(sEVs)and their small RNA(sRNA)cargoes could be promising biomarkers for the diagnosis of liver injury.However,the dynamic changes in serum sEVs and their sRNA components during liver injury have not been well characterized.Given that hepatic macrophages can quickly clear intravenously injected sEVs,the effect of liver injury-related serum sEVs on hepatic macrophages deserves to be explored.AIM To identify the characteristics of serum sEVs and the sRNAs during liver injury and explore their effects on hepatic macrophages.METHODS To identify serum sEV biomarkers for liver injury,we established a CCL4-induced mouse liver injury model in C57BL/6 mice to simulate acute liver injury(ALI),chronic liver injury(CLI)and recovery.Serum sEVs were obtained and characterized by transmission electron microscopy and nanoparticle tracking analysis.Serum sEV sRNAs were profiled by sRNA sequencing.Differentially expressed microRNAs(miRNAs)were compared to mouse liver-enriched miRNAs and previously reported circulating miRNAs related to human liver diseases.The biological significance was evaluated by Ingenuity Pathway Analysis of altered sEV miRNAs and conditioned cultures of ALI serum sEVs with primary hepatic macrophages.RESULTS We found that both ALI and CLI changed the concentration and morphology of serum sEVs.The proportion of serum sEV miRNAs increased upon liver injury,with the liver as the primary contributor.The altered serum sEV miRNAs based on mouse studies were consistent with human liver disease-related circulating miRNAs.We established serum sEV miRNA signatures for ALI and CLI and a panel of miRNAs(miR-122-5p,miR-192-5p,and miR-22-3p)as a common marker for liver injury.The differential serum sEV miRNAs in ALI contributed mainly to liver steatosis and inflammation,while those in CLI contributed primarily to hepatocellular carcinoma and hyperplasia.ALI serum sEVs decreased both CD86 and CD206 expression in monocyte-derived macrophages but increased CD206 expression in resident macrophages in vitro.CONCLUSION Serum sEVs acquired different concentrations,sizes,morphologies and sRNA contents upon liver injury and could change the phenotype of liver macrophages.Serum sEVs therefore have good diagnostic and therapeutic potential for liver injury.展开更多
A series of novel bis(trifluoroethyl)phosphonomethyl ether derivatives of acyclovir was synthesized and their in vitro anti-HBV activity was evaluated in HepG2 2.2.15 cells. In contrast to acyclovir, most of the des...A series of novel bis(trifluoroethyl)phosphonomethyl ether derivatives of acyclovir was synthesized and their in vitro anti-HBV activity was evaluated in HepG2 2.2.15 cells. In contrast to acyclovir, most of the described phosphonates emerged as potent inhibitors of HBV replication. Especially, the most active compound 11 with IC50 value of 2.92 μmol/L was 33 times more potent than acyclovir with ICso value of 100 μmol/L.展开更多
Objective:This study aimed to lay the foundation for the research on Panax notoginseng saponins(PNS)in pH-sensitive in situ gel and the development and improvement of related preparations.Methods:We used Carbopol■940...Objective:This study aimed to lay the foundation for the research on Panax notoginseng saponins(PNS)in pH-sensitive in situ gel and the development and improvement of related preparations.Methods:We used Carbopol■940,a commonly used pH-sensitive polymer,and the thickener hydroxypropyl methylcellulose(HPMC E4M)as an ophthalmic gel matrix to prepare an ophthalmic in situ gel of PNS.In addition,formula optimization was performed by assessing gelling capability with the results of in vitro release studies.In vitro(corneal permeation,rheological,and stability)and in vivo(ocular irritation and preliminary pharmacokinetics in the vitreous)studies were also performed.Results:The results demonstrated that the in situ gelling systems containing PNS showed a sustained release of the drug,making it an ideal ocular delivery system for improving posterior ocular bioavailability.Conclusions:This study lays the foundation for the research of PNS contained in an in situ pH-triggered gel as well as the development and improvement of related preparations.It concurrently traditional Chinese medicine with a contemporary in situ gelling approach to provide new directions for the treatment of posterior ocular diseases such as diabetic retinopathy.展开更多
Metabolomics is a newly developed discipline following genomics,transcriptomics,and proteomics.It is based on the theory of systems biology,supported by modern spectroscopy analysis technology and is analyzed by the e...Metabolomics is a newly developed discipline following genomics,transcriptomics,and proteomics.It is based on the theory of systems biology,supported by modern spectroscopy analysis technology and is analyzed by the external stimulation of organisms.By analyzing the overall changes of metabolites with low molecular weight in organism after being stimulated by the outside world,we can understand the physiological and pathological state of organism,and finally clarify the essence of biological changes of organism.In recent years,metabolomics has developed rapidly.It has been widely used in early toxicity screening of lead compounds,preclinical toxicity of drugs and toxicity evaluation of clinical drugs.The in-depth interpretation of metabolomics results is also developing.This article reviewed the progress of metabolomics technology and its application in the study of toxicity evaluation of traditional Chinese medicine.展开更多
Choriogenesis is the last step of insect oogenesis,a process by which the chorion polypeptides are produced by the follicular cells and deposited on the surface of oocytes in order to provide a highly specialized prot...Choriogenesis is the last step of insect oogenesis,a process by which the chorion polypeptides are produced by the follicular cells and deposited on the surface of oocytes in order to provide a highly specialized protective barrier to the embryo.The essential features of chorion genes have yet to be clearly understood in the diamondback moth,Plutella xylostella,a worldwide Lepidoptera pest attacking cruciferous crops and wild plants.In this study,complete sequences for 15 putative chorion genes were identified,and grouped into A and B classes.Phylogenetic analysis revealed that both classes were highly conserved and within each,branches are also species-specific.Chorion genes from each class were located in pairs on scaffolds of the P.xylostella genome,some of which shared the common promoter regulatory region.All chorion genes were highly specifically expressed in the P.xylostella adult females,mostly in the ovary with full yolk,which is a crucial period to build the shells of the eggs.RNAi-based knockdown of chorion-1,which is located on the Px_scaffold 6 alone,although had no effect on yolk deposition,resulted in smaller eggs and sharply reduced hatchability.Additionally,inhibition of PxCho-1 expression caused a less dense arrangement of the columnar layers,reduced exochorion roughness and shorter microvilli.Our study provides the foundation for exploring molecular mechanisms of female reproduction in P.xylostella,and for making use of chorion genes as the potential genetic-based molecular target to better control this economically important pest.展开更多
Fluorescent probes based on rhodamine skeleton are extensively used in biological imaging.However,the construction of ratiometric fluorescent probes based on the rhodamine skeleton without introducing additional fluor...Fluorescent probes based on rhodamine skeleton are extensively used in biological imaging.However,the construction of ratiometric fluorescent probes based on the rhodamine skeleton without introducing additional fluorophores is still challenging.Herein,we propose an effective method to construct a rhodamine-based ratiometric fluorescent probe through the regulation of electron cloud density.A ratiometric fluorescent probe RDQF-RB-NTR was successfully constructed for the detection of nitroreductase(NTR).RDQF-RB-NTR exhibits good sensitivity,high selectivity,and ratiometric response to NTR.Cell imaging experiments showed that RDQF-RB-NTR can rapidly and accurately detect the fluctuation of NTR in cells and difference of NTR levels between normal cells and cancer cells.In addition,RDQF-RB-NTR was successfully applied to the imaging of NTR in liver tissue slices,and we found that the level of NTR was upregulated in liver cirrhosis.展开更多
The rapid development of the Internet of Things and artificial intelligence technologies has increased the need for wearable,portable,and self-powered flexible sensing devices.Triboelectric nanogenerators(TENGs)based ...The rapid development of the Internet of Things and artificial intelligence technologies has increased the need for wearable,portable,and self-powered flexible sensing devices.Triboelectric nanogenerators(TENGs)based on gel materials(with excellent conductivity,mechanical tunability,environmental adaptability,and biocompatibility)are considered an advanced approach for developing a new generation of flexible sensors.This review comprehensively summarizes the recent advances in gel-based TENGs for flexible sensors,covering their principles,properties,and applications.Based on the development requirements for flexible sensors,the working mechanism of gel-based TENGs and the characteristic advantages of gels are introduced.Design strategies for the performance optimization of hydrogel-,organogel-,and aerogel-based TENGs are systematically summarized.In addition,the applications of gel-based TENGs in human motion sensing,tactile sensing,health monitoring,environmental monitoring,human-machine interaction,and other related fields are summarized.Finally,the challenges of gel-based TENGs for flexible sensing are discussed,and feasible strategies are proposed to guide future research.展开更多
文摘Odor pollution in landfill area has attracted more social attention in China. It is very important to control the generation of odor pollutants in situ. Analyzing odorous materials production form buried waste, simulated columns of different volatile solid (VS) content and different buried period waste were designed. Gas compounds produced from the columns were collected and analyzed by comprehensive two-dimensional gas chromatography (GC × GC) method. It has remarkable relationship between VS content and concentrations of odorous material. When VS content more than 40%, the total amount of odorous compounds increases remarkably. It can be inferred that reduced VS content of original waste may effective decreasing odorous materials production in landfill area. The old rubbish produced more odorous compounds than that of fresh one in simulated columns.
基金partially supported by U.S. National Science Foundation grants EAR-2221907partly sponsored by agencies of the United States Government。
文摘It is a challenge to make thorough but efficient experimental designs for the coupled mineral dissolution and precipitation studies in a multi-mineral system, because it is difficult to speculate the best experimental duration, optimal sampling schedule, effects of different experimental conditions, and how to maximize the experimental outputs prior to the actual experiments. Geochemical modeling is an efficient and effective tool to assist the experimental design by virtually running all scenarios of interest for the studied system and predicting the experimental outcomes. Here we demonstrated an example of geochemical modeling assisted experimental design of coupled labradorite dissolution and calcite and clayey mineral precipitation using multiple isotope tracers. In this study, labradorite(plagioclase) was chosen as the reactant because it is both a major component and one of the most reactive minerals in basalt. Following our isotope doping studies of single minerals in the last ten years, initial solutions in the simulations were doped withmultiple isotopes(e.g., Ca and Si). Geochemical modeling results show that the use of isotope tracers gives us orders of magnitude more sensitivity than the conventional method based on concentrations and allows us to decouple dissolution and precipitation reactions at near-equilibrium condition. The simulations suggest that the precise unidirectional dissolution rates can inform us which rate laws plagioclase dissolution has followed. Calcite precipitation occurred at near-equilibrium and the multiple isotope tracer experiments would provide near-equilibrium precipitation rates, which was a challenge for the conventional concentration-based experiments. In addition, whether the precipitation of clayey phases is the rate-limiting step in some multi-mineral systems will be revealed. Overall, the modeling results of multimineral reaction kinetics will improve the understanding of the coupled dissolution–precipitation in the multi-mineral systems and the quality of geochemical modeling prediction of CO_(2) removal and storage efficacy in the basalt systems.
基金grant from the State Key Laboratory of Ore Deposits at the Institute of Geochemistry, Chinese Academy of Sciences
文摘This paper explores how dissolution and precipitation reactions are coupled in batch reactor experimental systems at elevated temperatures. This is the fifth paper in our series of ‘‘Coupled Alkali Feldspar Dissolution and Secondary Mineral Precipitation in Batch Systems.'' In the previous four papers we presented batch experiments of alkali-feldspar hydrolysis and explored the coupling of dissolution and precipitation reactions(Fu et al. in Chem Geol91:955–964, 2009; Zhu and Lu in Geochim Cosmochim Acta 73:3171–3200, 2009; Zhu et al.in Geochim Cosmochim Acta 74:3963–3983, 2010; Lu et al. in Appl Geochem30:75–90, 2013). Here, we present the results of additionalK-rich feldspar hydrolysis experiments at 150 °C. Our solution chemistry measurements have constrained feldspar dissolution rates, and our high resolution transmission electron microscopy work has identified boehmite precipitation. Reaction path modeling of K-feldspar dissolution and boehmite precipitation simulated the coupled reactions, but only with forced changes of boehmite rate law in the middle of experimental duration. The results which are reported in this article lend further support to our hypothesis that slow secondary mineral precipitation explains part of the wellknown apparent discrepancy between lab measured and field estimated feldspar dissolution rates(Zhu et al. in Water–rock interaction, 2004).
基金financially supported by the National Natural Science Foundation of China(Nos.51875401 and 52075376).
文摘The friction pull plug welding(FPPW)of the 2219-T87 tungsten inert gas(TIG)welded joint was investigated,and the microstructures,precipitate evolution,mechanical properties,and fracture morphologies of this joint were analyzed and discussed.In this study,defectfree joints were obtained using a rotational speed of 7000 r/min,an axial feeding displacement of 12 mm,and an axial force of 20-22 kN.The results indicated that within these welding parameters,metallurgical bonding between the plug and plate is achieved by the formation of recrystallized grains.The microstructural features of the FPPW joint can be divided into different regions,including the heat-affected zone(HAZ),thermomechanically affected zone(TMAZ),recrystallization zone(RZ),heat-affected zone in the TIG weld(TIG-HAZ),and the thermomechanically affected zone in the TIG weld(TIG-TMAZ).In the TIG-TMAZ,the grains were highly deformed and elongated due to the shear and the extrusion that produces the plug during the FPPW process.The main reason for the softening in the TMAZ is determined to be the dissolution ofθ’and coarsening ofθprecipitate particles.In a tensile test,the FPPW joint welded with an axial force of 22 kN showed the highest ultimate tensile strength of 237 MPa.The locations of cracks and factures in the TIG-TMAZ were identified.The fracture morphology of the tensile sample showed good plasticity and toughness of the joints.
文摘BACKGROUND Serum small extracellular vesicles(sEVs)and their small RNA(sRNA)cargoes could be promising biomarkers for the diagnosis of liver injury.However,the dynamic changes in serum sEVs and their sRNA components during liver injury have not been well characterized.Given that hepatic macrophages can quickly clear intravenously injected sEVs,the effect of liver injury-related serum sEVs on hepatic macrophages deserves to be explored.AIM To identify the characteristics of serum sEVs and the sRNAs during liver injury and explore their effects on hepatic macrophages.METHODS To identify serum sEV biomarkers for liver injury,we established a CCL4-induced mouse liver injury model in C57BL/6 mice to simulate acute liver injury(ALI),chronic liver injury(CLI)and recovery.Serum sEVs were obtained and characterized by transmission electron microscopy and nanoparticle tracking analysis.Serum sEV sRNAs were profiled by sRNA sequencing.Differentially expressed microRNAs(miRNAs)were compared to mouse liver-enriched miRNAs and previously reported circulating miRNAs related to human liver diseases.The biological significance was evaluated by Ingenuity Pathway Analysis of altered sEV miRNAs and conditioned cultures of ALI serum sEVs with primary hepatic macrophages.RESULTS We found that both ALI and CLI changed the concentration and morphology of serum sEVs.The proportion of serum sEV miRNAs increased upon liver injury,with the liver as the primary contributor.The altered serum sEV miRNAs based on mouse studies were consistent with human liver disease-related circulating miRNAs.We established serum sEV miRNA signatures for ALI and CLI and a panel of miRNAs(miR-122-5p,miR-192-5p,and miR-22-3p)as a common marker for liver injury.The differential serum sEV miRNAs in ALI contributed mainly to liver steatosis and inflammation,while those in CLI contributed primarily to hepatocellular carcinoma and hyperplasia.ALI serum sEVs decreased both CD86 and CD206 expression in monocyte-derived macrophages but increased CD206 expression in resident macrophages in vitro.CONCLUSION Serum sEVs acquired different concentrations,sizes,morphologies and sRNA contents upon liver injury and could change the phenotype of liver macrophages.Serum sEVs therefore have good diagnostic and therapeutic potential for liver injury.
文摘A series of novel bis(trifluoroethyl)phosphonomethyl ether derivatives of acyclovir was synthesized and their in vitro anti-HBV activity was evaluated in HepG2 2.2.15 cells. In contrast to acyclovir, most of the described phosphonates emerged as potent inhibitors of HBV replication. Especially, the most active compound 11 with IC50 value of 2.92 μmol/L was 33 times more potent than acyclovir with ICso value of 100 μmol/L.
文摘Objective:This study aimed to lay the foundation for the research on Panax notoginseng saponins(PNS)in pH-sensitive in situ gel and the development and improvement of related preparations.Methods:We used Carbopol■940,a commonly used pH-sensitive polymer,and the thickener hydroxypropyl methylcellulose(HPMC E4M)as an ophthalmic gel matrix to prepare an ophthalmic in situ gel of PNS.In addition,formula optimization was performed by assessing gelling capability with the results of in vitro release studies.In vitro(corneal permeation,rheological,and stability)and in vivo(ocular irritation and preliminary pharmacokinetics in the vitreous)studies were also performed.Results:The results demonstrated that the in situ gelling systems containing PNS showed a sustained release of the drug,making it an ideal ocular delivery system for improving posterior ocular bioavailability.Conclusions:This study lays the foundation for the research of PNS contained in an in situ pH-triggered gel as well as the development and improvement of related preparations.It concurrently traditional Chinese medicine with a contemporary in situ gelling approach to provide new directions for the treatment of posterior ocular diseases such as diabetic retinopathy.
文摘Metabolomics is a newly developed discipline following genomics,transcriptomics,and proteomics.It is based on the theory of systems biology,supported by modern spectroscopy analysis technology and is analyzed by the external stimulation of organisms.By analyzing the overall changes of metabolites with low molecular weight in organism after being stimulated by the outside world,we can understand the physiological and pathological state of organism,and finally clarify the essence of biological changes of organism.In recent years,metabolomics has developed rapidly.It has been widely used in early toxicity screening of lead compounds,preclinical toxicity of drugs and toxicity evaluation of clinical drugs.The in-depth interpretation of metabolomics results is also developing.This article reviewed the progress of metabolomics technology and its application in the study of toxicity evaluation of traditional Chinese medicine.
基金funded by the National Natural Science Foundation of China(32172404)the Natural Science Foundation of Fujian Province,China(2019J01666)+1 种基金the Fujian Agriculture and Forestry University Fund for Distinguished Young Scholars,China(xjq201903)the"111"Program-Innovation Center for Ecologically Based Pest Management of Subtropical Crops,Fujian Agriculture and Fo restry University,China。
文摘Choriogenesis is the last step of insect oogenesis,a process by which the chorion polypeptides are produced by the follicular cells and deposited on the surface of oocytes in order to provide a highly specialized protective barrier to the embryo.The essential features of chorion genes have yet to be clearly understood in the diamondback moth,Plutella xylostella,a worldwide Lepidoptera pest attacking cruciferous crops and wild plants.In this study,complete sequences for 15 putative chorion genes were identified,and grouped into A and B classes.Phylogenetic analysis revealed that both classes were highly conserved and within each,branches are also species-specific.Chorion genes from each class were located in pairs on scaffolds of the P.xylostella genome,some of which shared the common promoter regulatory region.All chorion genes were highly specifically expressed in the P.xylostella adult females,mostly in the ovary with full yolk,which is a crucial period to build the shells of the eggs.RNAi-based knockdown of chorion-1,which is located on the Px_scaffold 6 alone,although had no effect on yolk deposition,resulted in smaller eggs and sharply reduced hatchability.Additionally,inhibition of PxCho-1 expression caused a less dense arrangement of the columnar layers,reduced exochorion roughness and shorter microvilli.Our study provides the foundation for exploring molecular mechanisms of female reproduction in P.xylostella,and for making use of chorion genes as the potential genetic-based molecular target to better control this economically important pest.
基金supported by the National Natural Science Foundation of China(Project:22074036 and 22004033).
文摘Fluorescent probes based on rhodamine skeleton are extensively used in biological imaging.However,the construction of ratiometric fluorescent probes based on the rhodamine skeleton without introducing additional fluorophores is still challenging.Herein,we propose an effective method to construct a rhodamine-based ratiometric fluorescent probe through the regulation of electron cloud density.A ratiometric fluorescent probe RDQF-RB-NTR was successfully constructed for the detection of nitroreductase(NTR).RDQF-RB-NTR exhibits good sensitivity,high selectivity,and ratiometric response to NTR.Cell imaging experiments showed that RDQF-RB-NTR can rapidly and accurately detect the fluctuation of NTR in cells and difference of NTR levels between normal cells and cancer cells.In addition,RDQF-RB-NTR was successfully applied to the imaging of NTR in liver tissue slices,and we found that the level of NTR was upregulated in liver cirrhosis.
基金supported by the National Natural Science Foundation of China(22068005,22278091)the Training Program for 1000 Backbone Teachers in Guangxi(2022).
文摘The rapid development of the Internet of Things and artificial intelligence technologies has increased the need for wearable,portable,and self-powered flexible sensing devices.Triboelectric nanogenerators(TENGs)based on gel materials(with excellent conductivity,mechanical tunability,environmental adaptability,and biocompatibility)are considered an advanced approach for developing a new generation of flexible sensors.This review comprehensively summarizes the recent advances in gel-based TENGs for flexible sensors,covering their principles,properties,and applications.Based on the development requirements for flexible sensors,the working mechanism of gel-based TENGs and the characteristic advantages of gels are introduced.Design strategies for the performance optimization of hydrogel-,organogel-,and aerogel-based TENGs are systematically summarized.In addition,the applications of gel-based TENGs in human motion sensing,tactile sensing,health monitoring,environmental monitoring,human-machine interaction,and other related fields are summarized.Finally,the challenges of gel-based TENGs for flexible sensing are discussed,and feasible strategies are proposed to guide future research.