To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main compon...To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.展开更多
Direct shear tests were conducted on sandstone specimens under different constant normal stresses to study the coalescence of cracks between non-persistent flaws and the shear sliding characteristics of the shear-form...Direct shear tests were conducted on sandstone specimens under different constant normal stresses to study the coalescence of cracks between non-persistent flaws and the shear sliding characteristics of the shear-formed fault.Digital image correlation and acoustic emission(AE)techniques were used to monitor the evolution of shear bands at the rock bridge area and microcracking behaviors.The experimental results revealed that the shear stresses corresponding to the peak and sub-peak in the stressdisplacement curve are significantly affected by the normal stress.Strain localization bands emerged at both the tip of joints and the rock bridge,and their extension and interaction near the peak stress caused a surge in the AE hit rate and a significant decrease in the AE b value.Short and curvilinear strain bands were detected at low normal stress,while high normal stress generally led to more microcracking events and longer coplanar cracks at the rock bridge area.Furthermore,an increase in normal stress resulted in a higher AE count rate and more energetic AE events during friction sliding along the shearformed fault.It was observed that the elastic energy released during the crack coalescence at the prepeak stage was much greater than that released during friction sliding at the post-peak stage.More than 75%of AE events were located in the low-frequency band(0e100 kHz),and this proportion continued to rise with increasing normal stress.Moreover,more AE events of low AF value and high RA value were observed in specimens subjected to high normal stress,indicating that greater normal stress led to more microcracks of shear nature.展开更多
Stress measurement plays a crucial role in geomechanics and rock engineering,especially for the design and construction of large-scale rock projects.This paper presents a novel method,based on the traditional stress r...Stress measurement plays a crucial role in geomechanics and rock engineering,especially for the design and construction of large-scale rock projects.This paper presents a novel method,based on the traditional stress relief approach,for indirectly measuring rock stress using optical techniques.The proposed method allows for the acquisition of full-field strain evolution on the borehole’s inner wall before and after disturbance,facilitating the determination of three-dimensional(3D)stress information at multiple points within a single borehole.The study focuses on presenting the method’s theoretical framework,laboratory validation results,and equipment design conception.The theoretical framework comprises three key components:the optical imaging method of the borehole wall,the digital image correlation(DIC)method,and the stress calculation procedure.Laboratory validation tests investigate strain field distribution on the borehole wall under varying stress conditions,with stress results derived from DIC strain data.Remarkably,the optical method demonstrates better measurement accuracy during the unloading stage compared to conventional strain gauge methods.At relatively high stress levels,the optical method demonstrates a relative error of less than 7%and an absolute error within 0.5 MPa.Furthermore,a comparative analysis between the optical method and the conventional contact resistance strain gauge method highlights the optical method’s enhanced accuracy and stability,particularly during the unloading stage.The proposed optical stress measurement device represents a pioneering effort in the application of DIC technology to rock engineering,highlighting its potential to advance stress measurement techniques in the field.展开更多
Understanding rock mechanical behaviors after thermal shock is critically important for practical engineering application.In this context,physico-mechanical properties of Beishan granite,Gansu Province,China after cyc...Understanding rock mechanical behaviors after thermal shock is critically important for practical engineering application.In this context,physico-mechanical properties of Beishan granite,Gansu Province,China after cyclic thermal shock were studied using digital image correlation(DIC),acoustic emission(AE)monitoring,and microscopic observation.The results show that the peak strength and elastic modulus decreased gradually with increase in thermal shock cycle.However,the above two parameters showed no further changes after 10 thermal shock cycles.The loading stress ratio(i.e.the ratio of the current loading stress level to the peak stress in this state)corresponding to the occurrence of the uneven principal strain field and the local strain concentration zone on the surface of the granite specimen decreased with increase in thermal shock cycle.Three transformation forms of the standard deviation curves of the surface principal strain were found.For granite with fewer thermal shock cycles(e.g.no more than 2 cycles),the standard deviation curves exhibited approximately exponential growth in exponential form.With increase in thermal shock cycle,the S-shaped curve was dominant.After 10 thermal shock cycles,an approximate ladder-shaped curve was observed.It is displayed that AE activity was mainly concentrated around the peak strength zone of the granite specimen when the rock samples underwent fewer thermal shock cycles.With increase in thermal shock cycle,AE activity could occur at low loading stress levels.Microscopic observation further confirmed these scenarios,which showed that more microcracks were induced with increase in thermal shock cycle.The number of induced microcracks at the edge location of the granite specimen was significantly larger than that at the interior location.Finally,a continuum damage model was proposed to describe the damage evolution of the granite specimen after cyclic thermal shock during loading.展开更多
A series of coupled static-dynamic loading tests is carried out in this study to understand the effect of slightly dynamic disturbance on the rocks under high static stress.The acoustic emission(AE)and digital image c...A series of coupled static-dynamic loading tests is carried out in this study to understand the effect of slightly dynamic disturbance on the rocks under high static stress.The acoustic emission(AE)and digital image correlation(DIC)techniques are combined to quantitatively characterize the damage and fracturing behaviors of rocks.The effects of three influencing factors,i.e.initial static stress,disturbance amplitude,and disturbance frequency,on the damage and fracturing evolution are analyzed.The experimental results reveal the great differences in AE characteristics and fracturing behaviors of rocks under static loads and coupled static-dynamic loads.Both the Kaiser effect and Felicity effect are observed during the disturbance loading process.The crack initiation,stable and unstable propagation in the highly-stressed rocks can be triggered by cyclic disturbance loads,and more local tensile splitting cracks are found in the rocks subjected to coupled static-dynamic loads.The damage and fracturing evolution of rocks during cyclic disturbances can be divided into two stages,i.e.steady and accelerated stages,and the increase rate and proportion of each stage are greatly affected by these influencing factors.High initial static stress,low disturbance frequency,and high disturbance amplitude are considered to be adverse factors to the stability of the rocks,which would induce a high increase rate of the steady stage and a high proportion of the accelerated stage within the whole disturbance period.Based on the two-stage damage evolution trend,a linear-exponential damage model is employed to predict the instability of the rocks under coupled static-dynamic loads.展开更多
A method of continuous-discontinuous cellular automaton for modeling the growth and coalescence of multiple cracks in brittle material is presented. The method uses the level set to track arbitrary discontinuities, an...A method of continuous-discontinuous cellular automaton for modeling the growth and coalescence of multiple cracks in brittle material is presented. The method uses the level set to track arbitrary discontinuities, and calculation grids are independent of the discontinuities and no remeshing are required with the crack growing. Based on Grif- fith fracture theory and Mohr-Coulumb criterion, a mixed fracture criterion for multiple cracks growth in brittle mate- rial is proposed. The method treats the junction and coales- cence of multiple cracks, and junction criterion and coales- cence criterion for brittle material are given, too. Besides, in order to overcome the tracking error in the level set ap- proximation for crack junction and coalescence, a dichotomy searching algorithm is proposed. Introduced the above the- ories into continuous-discontinuous cellular automaton, the present method can be applied to solving multiple crack growth in brittle material, and only cell stiffness is needed and no assembled global stiffness is needed. Some numerical examples are given to shown that the present method is efficient and accurate for crack junction, coalescence and percolation problems.展开更多
The Moon,as the closest celestial body to the Earth,plays a pivotal role in the progression of deep space exploration,and the establishment of research outposts on its surface represents a crucial step in this mission...The Moon,as the closest celestial body to the Earth,plays a pivotal role in the progression of deep space exploration,and the establishment of research outposts on its surface represents a crucial step in this mission.Lunar lava tubes are special underground caves formed by volcanic eruptions and are considered as ideal natural shelters and scientific laboratories for lunar base construction.This paper begins with an in-depth overview of the geological origins,exploration history,and distribution locations of lunar lava tubes.Subsequently,it delves into the presentation of four distinctive advantages and typical concepts for constructing bases within lava tubes,summarizing the ground-based attempts made thus far in lunar lava tube base construction.Field studies conducted on a lava tube in Hainan revealed rock compositions similar to those found during the Apollo missions and clear lava tube structures,making it a promising analog site.Lastly,the challenges and opportunities encountered in the field of geotechnical engineering regarding the establishment of lunar lava tube bases are discussed,encompassing cave exploration technologies,in-situ testing methods,geomechanical properties under lunar extreme environments,base design and structural stability assessment,excavation and reinforcement techniques,and simulated Earth-based lava tube base.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52125903)the China Postdoctoral Science Foundation(Grant No.2023M730367)the Fundamental Research Funds for Central Public Welfare Research Institutes of China(Grant No.CKSF2023323/YT).
文摘To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.
基金supported by the National Natural Science Foundation of China(Grant No.52125903).
文摘Direct shear tests were conducted on sandstone specimens under different constant normal stresses to study the coalescence of cracks between non-persistent flaws and the shear sliding characteristics of the shear-formed fault.Digital image correlation and acoustic emission(AE)techniques were used to monitor the evolution of shear bands at the rock bridge area and microcracking behaviors.The experimental results revealed that the shear stresses corresponding to the peak and sub-peak in the stressdisplacement curve are significantly affected by the normal stress.Strain localization bands emerged at both the tip of joints and the rock bridge,and their extension and interaction near the peak stress caused a surge in the AE hit rate and a significant decrease in the AE b value.Short and curvilinear strain bands were detected at low normal stress,while high normal stress generally led to more microcracking events and longer coplanar cracks at the rock bridge area.Furthermore,an increase in normal stress resulted in a higher AE count rate and more energetic AE events during friction sliding along the shearformed fault.It was observed that the elastic energy released during the crack coalescence at the prepeak stage was much greater than that released during friction sliding at the post-peak stage.More than 75%of AE events were located in the low-frequency band(0e100 kHz),and this proportion continued to rise with increasing normal stress.Moreover,more AE events of low AF value and high RA value were observed in specimens subjected to high normal stress,indicating that greater normal stress led to more microcracks of shear nature.
基金funding support from the National Natural Science Foundation of China(Grant Nos.52125903 and 52209149).
文摘Stress measurement plays a crucial role in geomechanics and rock engineering,especially for the design and construction of large-scale rock projects.This paper presents a novel method,based on the traditional stress relief approach,for indirectly measuring rock stress using optical techniques.The proposed method allows for the acquisition of full-field strain evolution on the borehole’s inner wall before and after disturbance,facilitating the determination of three-dimensional(3D)stress information at multiple points within a single borehole.The study focuses on presenting the method’s theoretical framework,laboratory validation results,and equipment design conception.The theoretical framework comprises three key components:the optical imaging method of the borehole wall,the digital image correlation(DIC)method,and the stress calculation procedure.Laboratory validation tests investigate strain field distribution on the borehole wall under varying stress conditions,with stress results derived from DIC strain data.Remarkably,the optical method demonstrates better measurement accuracy during the unloading stage compared to conventional strain gauge methods.At relatively high stress levels,the optical method demonstrates a relative error of less than 7%and an absolute error within 0.5 MPa.Furthermore,a comparative analysis between the optical method and the conventional contact resistance strain gauge method highlights the optical method’s enhanced accuracy and stability,particularly during the unloading stage.The proposed optical stress measurement device represents a pioneering effort in the application of DIC technology to rock engineering,highlighting its potential to advance stress measurement techniques in the field.
基金supported by the State Key Research Development Program of China(Grant No.2017YFC0804203)National Nature Science Foundation of China(Grant No.51621006)Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDB-SSW-DQC029).
文摘Understanding rock mechanical behaviors after thermal shock is critically important for practical engineering application.In this context,physico-mechanical properties of Beishan granite,Gansu Province,China after cyclic thermal shock were studied using digital image correlation(DIC),acoustic emission(AE)monitoring,and microscopic observation.The results show that the peak strength and elastic modulus decreased gradually with increase in thermal shock cycle.However,the above two parameters showed no further changes after 10 thermal shock cycles.The loading stress ratio(i.e.the ratio of the current loading stress level to the peak stress in this state)corresponding to the occurrence of the uneven principal strain field and the local strain concentration zone on the surface of the granite specimen decreased with increase in thermal shock cycle.Three transformation forms of the standard deviation curves of the surface principal strain were found.For granite with fewer thermal shock cycles(e.g.no more than 2 cycles),the standard deviation curves exhibited approximately exponential growth in exponential form.With increase in thermal shock cycle,the S-shaped curve was dominant.After 10 thermal shock cycles,an approximate ladder-shaped curve was observed.It is displayed that AE activity was mainly concentrated around the peak strength zone of the granite specimen when the rock samples underwent fewer thermal shock cycles.With increase in thermal shock cycle,AE activity could occur at low loading stress levels.Microscopic observation further confirmed these scenarios,which showed that more microcracks were induced with increase in thermal shock cycle.The number of induced microcracks at the edge location of the granite specimen was significantly larger than that at the interior location.Finally,a continuum damage model was proposed to describe the damage evolution of the granite specimen after cyclic thermal shock during loading.
基金the State Key Research Development Program of China(Grant No.2017YFC0804203)National Natural Science Foundation of China(Grant No.51621006)the Open Fund of the State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z018001).
文摘A series of coupled static-dynamic loading tests is carried out in this study to understand the effect of slightly dynamic disturbance on the rocks under high static stress.The acoustic emission(AE)and digital image correlation(DIC)techniques are combined to quantitatively characterize the damage and fracturing behaviors of rocks.The effects of three influencing factors,i.e.initial static stress,disturbance amplitude,and disturbance frequency,on the damage and fracturing evolution are analyzed.The experimental results reveal the great differences in AE characteristics and fracturing behaviors of rocks under static loads and coupled static-dynamic loads.Both the Kaiser effect and Felicity effect are observed during the disturbance loading process.The crack initiation,stable and unstable propagation in the highly-stressed rocks can be triggered by cyclic disturbance loads,and more local tensile splitting cracks are found in the rocks subjected to coupled static-dynamic loads.The damage and fracturing evolution of rocks during cyclic disturbances can be divided into two stages,i.e.steady and accelerated stages,and the increase rate and proportion of each stage are greatly affected by these influencing factors.High initial static stress,low disturbance frequency,and high disturbance amplitude are considered to be adverse factors to the stability of the rocks,which would induce a high increase rate of the steady stage and a high proportion of the accelerated stage within the whole disturbance period.Based on the two-stage damage evolution trend,a linear-exponential damage model is employed to predict the instability of the rocks under coupled static-dynamic loads.
基金supported by the National Key Basic Research Program of China(2013CB036405)the National Natural Science Foundation of China(11002154,41272349,and 41372315)the CAS/SAFEA International Partnership Program for Creative Research Teams(KZCX2-YW-T12)
文摘A method of continuous-discontinuous cellular automaton for modeling the growth and coalescence of multiple cracks in brittle material is presented. The method uses the level set to track arbitrary discontinuities, and calculation grids are independent of the discontinuities and no remeshing are required with the crack growing. Based on Grif- fith fracture theory and Mohr-Coulumb criterion, a mixed fracture criterion for multiple cracks growth in brittle mate- rial is proposed. The method treats the junction and coales- cence of multiple cracks, and junction criterion and coales- cence criterion for brittle material are given, too. Besides, in order to overcome the tracking error in the level set ap- proximation for crack junction and coalescence, a dichotomy searching algorithm is proposed. Introduced the above the- ories into continuous-discontinuous cellular automaton, the present method can be applied to solving multiple crack growth in brittle material, and only cell stiffness is needed and no assembled global stiffness is needed. Some numerical examples are given to shown that the present method is efficient and accurate for crack junction, coalescence and percolation problems.
基金supported by the National Natural Science Foundation of China(Nos.52125903 and 52339001).
文摘The Moon,as the closest celestial body to the Earth,plays a pivotal role in the progression of deep space exploration,and the establishment of research outposts on its surface represents a crucial step in this mission.Lunar lava tubes are special underground caves formed by volcanic eruptions and are considered as ideal natural shelters and scientific laboratories for lunar base construction.This paper begins with an in-depth overview of the geological origins,exploration history,and distribution locations of lunar lava tubes.Subsequently,it delves into the presentation of four distinctive advantages and typical concepts for constructing bases within lava tubes,summarizing the ground-based attempts made thus far in lunar lava tube base construction.Field studies conducted on a lava tube in Hainan revealed rock compositions similar to those found during the Apollo missions and clear lava tube structures,making it a promising analog site.Lastly,the challenges and opportunities encountered in the field of geotechnical engineering regarding the establishment of lunar lava tube bases are discussed,encompassing cave exploration technologies,in-situ testing methods,geomechanical properties under lunar extreme environments,base design and structural stability assessment,excavation and reinforcement techniques,and simulated Earth-based lava tube base.