The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron mi...The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron microscopy(SEM)and laboratory computed tomography(CT).Results showed that the newly developed AlSi9MnMoV alloy exhibited improved mechanical properties when compared to the AlSi10MnMg alloy.The AlSi9MnMoV alloy,which was designed with trace multicomponent additions,displays a notable grain refining effect in comparison to the AlSi10MnMg alloy.Refining elements Ti,Zr,V,Nb,B promote heterogeneous nucleation and reduce the grain size of primaryα-Al.At a lower slow shot speed,the large ESCs are easier to form and gather,developing into the dendrite net and net-shrinkage.With an increase in slow shot speed,the size and number of ESCs and porosities significantly reduce.In addition,the distribution of ESCs is more dispersed and the net-shrinkage disappears.The tensile property is greatly improved by adopting a higher slow shot speed.The ultimate tensile strength is enhanced from 260.31 MPa to 290.31 MPa(increased by 11.52%),and the elongation is enhanced from 3.72%to 6.34%(increased by 70.52%).展开更多
A new Al-5Ti-0.75B-0.2C master alloy was successfully prepared by self-propagating high-temperature(SHS)reaction from an Al-Ti-B_4C system with molten Al.Microstructure and phase characterization of the prepared Al-...A new Al-5Ti-0.75B-0.2C master alloy was successfully prepared by self-propagating high-temperature(SHS)reaction from an Al-Ti-B_4C system with molten Al.Microstructure and phase characterization of the prepared Al-5Ti-0.75B-0.2C master alloy show that the nearly spherical TiC particles,hexagonal or rectangular TiB_2 particles,and blocklike TiAl_3 particles distribute uniformly in the aluminum matrix.Grain refining test on commercial pure aluminum indicates that Al-5Ti-0.75B-0.2C master alloy exhibits a better grain refining performance than Al-5Ti-lB master alloy.By addition of 0.2 wt%Al-5Ti-0.75B-0.2C master alloy,the average grain size of a-Al can be effectively refined to160 ± 5 μm from about 3000 μm,and the tensile strength and elongation are increased by about 20%and 14.1%due to the grain refinement.展开更多
基金financially supported by the National Key Research and Development Program of China(2022YFB3404201)the Major Science and Technology Project of Changchun City,Jilin Province(Grant No.20210301024GX)。
文摘The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron microscopy(SEM)and laboratory computed tomography(CT).Results showed that the newly developed AlSi9MnMoV alloy exhibited improved mechanical properties when compared to the AlSi10MnMg alloy.The AlSi9MnMoV alloy,which was designed with trace multicomponent additions,displays a notable grain refining effect in comparison to the AlSi10MnMg alloy.Refining elements Ti,Zr,V,Nb,B promote heterogeneous nucleation and reduce the grain size of primaryα-Al.At a lower slow shot speed,the large ESCs are easier to form and gather,developing into the dendrite net and net-shrinkage.With an increase in slow shot speed,the size and number of ESCs and porosities significantly reduce.In addition,the distribution of ESCs is more dispersed and the net-shrinkage disappears.The tensile property is greatly improved by adopting a higher slow shot speed.The ultimate tensile strength is enhanced from 260.31 MPa to 290.31 MPa(increased by 11.52%),and the elongation is enhanced from 3.72%to 6.34%(increased by 70.52%).
基金supported by the Scientific and Technical Project of Sichuan Province(Nos.13CGZHZX0200,2014GZX0064,2015GZ0057)
文摘A new Al-5Ti-0.75B-0.2C master alloy was successfully prepared by self-propagating high-temperature(SHS)reaction from an Al-Ti-B_4C system with molten Al.Microstructure and phase characterization of the prepared Al-5Ti-0.75B-0.2C master alloy show that the nearly spherical TiC particles,hexagonal or rectangular TiB_2 particles,and blocklike TiAl_3 particles distribute uniformly in the aluminum matrix.Grain refining test on commercial pure aluminum indicates that Al-5Ti-0.75B-0.2C master alloy exhibits a better grain refining performance than Al-5Ti-lB master alloy.By addition of 0.2 wt%Al-5Ti-0.75B-0.2C master alloy,the average grain size of a-Al can be effectively refined to160 ± 5 μm from about 3000 μm,and the tensile strength and elongation are increased by about 20%and 14.1%due to the grain refinement.