期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Highly Efficient and Stable FAPbI_(3) Perovskite Solar Cells and Modules Based on Exposure of the(011)Facet 被引量:2
1
作者 Kai Zhang Bin Ding +12 位作者 Chenyue Wang pengju shi Xianfu Zhang Cheng Liu Yi Yang Xingyu Gao Rui Wang Li Tao Keith G.Brooks Songyuan Dai Paul J.Dyson Mohammad Khaja Nazeeruddin Yong Ding 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期164-174,共11页
Perovskite crystal facets greatly impact the performance and stability of their corresponding photovoltaic devices.Compared to the(001)facet,the(011)facet yields better photoelectric properties,including higher conduc... Perovskite crystal facets greatly impact the performance and stability of their corresponding photovoltaic devices.Compared to the(001)facet,the(011)facet yields better photoelectric properties,including higher conductivity and enhanced charge carrier mobility.Thus,achieving(011)facet-exposed films is a promising way to improve device performance.However,the growth of(011)facets is energetically unfavorable in FAPbI_(3) perovskites due to the influence of methylammonium chloride additive.Here,1-butyl-4-methylpyridinium chloride([4MBP]Cl)was used to expose(011)facets.The[4MBP]^(+)cation selectively decreases the surface energy of the(011)facet enabling the growth of the(011)plane.The[4MBP]^(+)cation causes the perovskite nuclei to rotate by 45°such that(011)crystal facets stack along the out-of-plane direction.The(011)facet has excellent charge transport properties and can achieve better-matched energy level alignment.In addition,[4MBP]Cl increases the activation energy barrier for ion migration,suppressing decomposition of the perovskite.As a result,a small-size device(0.06 cm2)and a module(29.0 cm2)based on exposure of the(011)facet achieved power conversion efficiencies of 25.24%and 21.12%,respectively. 展开更多
关键词 Renewable energy Perovskite solar cell Perovskite solar module Facet engineering
下载PDF
Advanced partial nucleation for single-phase FA0.92MA0.08PbI3-based high-efficiency perovskite solar cells 被引量:2
2
作者 pengju shi Yong Ding +7 位作者 Cheng Liu Yi Yang Zulqarnain Arain Molang Cai Yingke Ren Tasawar Hayat Ahmed Alsaedi Songyuan Dai 《Science China Materials》 SCIE EI CSCD 2019年第12期1846-1856,共11页
To date, extensive research has been carried out,with considerable success, on the development of highperformance perovskite solar cells(PSCs). Owing to its wide absorption range and remarkable thermal stability, the ... To date, extensive research has been carried out,with considerable success, on the development of highperformance perovskite solar cells(PSCs). Owing to its wide absorption range and remarkable thermal stability, the mixedcation perovskite FAxMA1-xPbI3(formamidinium/methylammonium lead iodide) promises high performance. However, the ratio of the mixed cations in the perovskite film has proved difficult to control with precursor solution. In addition, the FAxMA1-xPbI3 films contain a high percentage of MA+and suffer from serious phase separation and high trap states, resulting in inferior photovoltaic performance. In this study, to suppress phase separation, a post-processing method was developed to partially nucleate before annealing, by treating the as-prepared intermediate phase FAI-Pb I2-DMSO(DMSO: dimethylsulfoxide) with mixed FAI/MAI solution. It was found that in the final perovskite, FA0.92MA0.08 PbI3, defects were substantially reduced because the analogous molecular structure initiated ion exchange in the post-processed thin perovskite films, which advanced partial nucleation. As a result, the increased light harvesting and reduced trap states contributed to the enhancement of open-circuit voltage and short-circuit current. The PSCs produced by the post-processing method presented reliable reproducibility, with a maximum power conversion efficiency of 20.80% and a degradation of ~30% for 80 days in standard atmospheric conditions. 展开更多
关键词 perovskite solar cell (PSC) mixed cations partialnucleation single phase defects stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部