Antibiotics in poultry feed to boost growth performance are becoming increasingly contentious due to concerns over antimicrobial resistance development.Essential oils(EOs),as natural,plant-derived compounds,have demon...Antibiotics in poultry feed to boost growth performance are becoming increasingly contentious due to concerns over antimicrobial resistance development.Essential oils(EOs),as natural,plant-derived compounds,have demonstrated antimicrobial and antioxidant properties.EOs may potentially improve poultry health and growth performance when included in poultry feed.Nevertheless,the incorporation of EOs as nutritional additives is hindered by their high volatility,low water solubility,poor intestinal absorption,and sensitivity to environmental conditions.Recently,nanoencapsulation strategies using nanoformulations have emerged as a potential solution to these challenges,improving the stability and bioavailability of EOs,and enabling targeted delivery in poultry feed.This review provides an overview of the antioxidant and antibacterial properties of EOs,the current limitations of their applications in poultry feed,and the recent advancements in nano-engineering to overcome these limitations.Furthermore,we outline the potential future research direction on EO nanoformulations,emphasizing their promising role in advancing sustainable poultry nutrition.展开更多
Organoids are three-dimensional culture systems generated from embryonic stem cells,induced pluripotent stem cells,and adult stem cells.They are capable of cell proliferation,differentiation,and self-renewal.Upon stim...Organoids are three-dimensional culture systems generated from embryonic stem cells,induced pluripotent stem cells,and adult stem cells.They are capable of cell proliferation,differentiation,and self-renewal.Upon stimulation by signal factors and/or growth factors,organoids self-assemble to replicate the morphological and structural characteristics of the corresponding organs.They provide an extraordinary platform for investigating organ development and mimicking pathological processes.Organoid biobanks derived from a wide range of carcinomas have been established to represent different lesions or stages of clinical tumors.Importantly,genomic and transcriptomic analyses have confirmed maintenance of intra-and interpatient heterogeneities in organoids.Therefore,this technology has the potential to revolutionize drug screening and personalized medicine.In this review,we summarized the characteristics and applications of organoids in cancer research by the establishment of organoid biobanks directly from tumor organoids or from genetically modified non-cancerous organoids.We also analyzed the current state of organoid applications in drug screening and personalized medicine.展开更多
Although the Ostwald ripening approach is often utilized to manufacture single hollow metal oxide,constructing hollow binary oxide heterostructures as potent photoelectrochemical(PEC)catalysts is still obscure and cha...Although the Ostwald ripening approach is often utilized to manufacture single hollow metal oxide,constructing hollow binary oxide heterostructures as potent photoelectrochemical(PEC)catalysts is still obscure and challenging.Herein,we reveal a general strategy for fabricating hollow binary oxides heterostructures(Co_(3)O_(4)-δ-MnO_(2)and Co_(3)O_(4)–SnO_(2))utilizing Ostwald ripening.Hollow Co_(3)O_(4)-δ-MnO_(2)nano-network with the structure evolution process was systematically explored through experimental and theoretical tools,identifying the origin of hollow binary oxides due to the interfaces acting as landing sites for their growth.In addition,the structural evolution,from hollow Co_(3)O_(4)-δ-MnO_(2)to Co_(3)O_(4)-α-MnO_(2),can be observed when the time of secondary hydrothermal reaches 96 h due to the topotactic layer-to-tunnel transition process.Notably,optimized Co_(3)O_(4)-δ-MnO_(2)-48 exhibits a superior PEC degradation efficiency of 96.42%and excellent durability(20,000 min)under harsh acid conditions,attributed to the massive hollow structures'vast surface area for high intently active species.Furthermore,density functional theory simulations elucidated the Co_(3)O_(4)-δ-MnO_(2)’electron-deficient surface and high d-band center(Co_(3)O_(4)-δ-MnO_(2),-1.06;Co_(3)O_(4)-α-MnO_(2),-1.49),strengthening the interaction between the catalyst's surface and active species and prolonging the lifetime of active species ofO_(2)and 1 O_(2).This work not only demonstrates superior PEC degradation efficiency of hollow Co_(3)O_(4)-δ-MnO_(2)for practical use but also lays the cornerstone for constructing hollow binary oxides heterostructures through Ostwald ripening.展开更多
Ecological water replenishment(EWR)is an important strategy for river restoration globally,but timely evaluation of its ecological effects at a large spatiotemporal scale to further adjust the EWR schemes is of great ...Ecological water replenishment(EWR)is an important strategy for river restoration globally,but timely evaluation of its ecological effects at a large spatiotemporal scale to further adjust the EWR schemes is of great challenge.Here,we examine the impact of EWR on microeukaryotic plankton communities in three distinct river ecosystems through environmental DNA(eDNA)metabarcoding.The three ecosystems include a long-term cut-off river,a short-term connected river after EWR,and long-term connected rivers.We analyzed community stability by investigating species composition,stochastic and deterministic dynamics interplay,and ecological network robustness.We found that EWR markedly reduced the diversity and complexity of microeukaryotic plankton,altered their community dynamics,and lessened the variation within the community.Moreover,EWR disrupted the deterministic patterns of community organization,favoring dispersal constraints,and aligning with trends observed in naturally connected rivers.The shift from an isolated to a temporarily connected river appeared to transition community structuring mechanisms from deterministic to stochastic dominance,whereas,in permanently connected rivers,both forces concurrently influenced community assembly.The ecological network in temporarily connected rivers post-EWR demonstrated significantly greater stability and intricacy compared to other river systems.This shift markedly bolstered the resilience of the ecological network.The eDNA metabarcoding insights offer a novel understanding of ecosystem resilience under EWR interventions,which could be critical in assessing the effects of river restoration projects throughout their life cycle.展开更多
The concentration of short-chain polychlorinated paraffins(SCCPs) in the urban air of Dalian,China was monitored from September 2016 to August 2017 with a self-developed passive sampler(PAS1) and an active high-volume...The concentration of short-chain polychlorinated paraffins(SCCPs) in the urban air of Dalian,China was monitored from September 2016 to August 2017 with a self-developed passive sampler(PAS1) and an active high-volume sampler, simultaneously. PAS1 successfully collected the entire target SCCPs in the ambient air. Air SCCPs sampled by PAS1 were found be in the linear uptake stage during 181 days of sampling. Passive and active samples showed comparable congener profiles, and the dominant contributors of SCCPs in the two kinds of samples were similar. A significant linear correlation was observed between the total concentration of SCCPs sampled by PAS1 and active sampler in the four seasons. The passive sampling rates of the PAS1 for the gas and particulate phases of SCCPs were measured. The quantitative structure–property relationship of the sampling rate of PAS1(Rair) for gas-phase SCCPs was studied. From the molecular point of view, Rairwas mainly affected by the molecular weight and sub-cooled liquid vapor pressure of SCCPs. In general, SCCPs in the urban air of Dalian mainly existed in gas phase,lower molecular weight SCCPs primarily occurred in the gas phase, whereas higher molecular weight SCCPs were predominately adsorbed or absorbed on airborne particles. The air concentration of SCCPs in the four seasons were different, the correlation of the concentration of SCCPs in the air with the meteorology parameters was conducted. The exposure risk by intake air SCCPs of the residents around the sampling sites was evaluated according to the European risk assessment standards.展开更多
基金supported by the Queensland-Chinese Academy of Sciences Collaborative Science Fund(QCSA-0001)。
文摘Antibiotics in poultry feed to boost growth performance are becoming increasingly contentious due to concerns over antimicrobial resistance development.Essential oils(EOs),as natural,plant-derived compounds,have demonstrated antimicrobial and antioxidant properties.EOs may potentially improve poultry health and growth performance when included in poultry feed.Nevertheless,the incorporation of EOs as nutritional additives is hindered by their high volatility,low water solubility,poor intestinal absorption,and sensitivity to environmental conditions.Recently,nanoencapsulation strategies using nanoformulations have emerged as a potential solution to these challenges,improving the stability and bioavailability of EOs,and enabling targeted delivery in poultry feed.This review provides an overview of the antioxidant and antibacterial properties of EOs,the current limitations of their applications in poultry feed,and the recent advancements in nano-engineering to overcome these limitations.Furthermore,we outline the potential future research direction on EO nanoformulations,emphasizing their promising role in advancing sustainable poultry nutrition.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.31671421,82030079,and 82003187).
文摘Organoids are three-dimensional culture systems generated from embryonic stem cells,induced pluripotent stem cells,and adult stem cells.They are capable of cell proliferation,differentiation,and self-renewal.Upon stimulation by signal factors and/or growth factors,organoids self-assemble to replicate the morphological and structural characteristics of the corresponding organs.They provide an extraordinary platform for investigating organ development and mimicking pathological processes.Organoid biobanks derived from a wide range of carcinomas have been established to represent different lesions or stages of clinical tumors.Importantly,genomic and transcriptomic analyses have confirmed maintenance of intra-and interpatient heterogeneities in organoids.Therefore,this technology has the potential to revolutionize drug screening and personalized medicine.In this review,we summarized the characteristics and applications of organoids in cancer research by the establishment of organoid biobanks directly from tumor organoids or from genetically modified non-cancerous organoids.We also analyzed the current state of organoid applications in drug screening and personalized medicine.
基金supported by the National Natural Science Foundation of China(21875026,21878031)the Program for Liaoning Excellent Talents in University(LR2014013)+4 种基金the Science and Technology Foundation of Liaoning Province(No.201602052)the Natural Science Foundation of Liaoning Province(No.20170520427)supported by Liaoning Revitalization Talents Program(XLYC1802124)sponsored by the Liaoning BaiQianWan Talents Program,the scientific research fund of the educational department of Liaoning province(J2019013)The Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science(Project number:2019JH3/30100034,contract number:2019010278-JH3/301).
文摘Although the Ostwald ripening approach is often utilized to manufacture single hollow metal oxide,constructing hollow binary oxide heterostructures as potent photoelectrochemical(PEC)catalysts is still obscure and challenging.Herein,we reveal a general strategy for fabricating hollow binary oxides heterostructures(Co_(3)O_(4)-δ-MnO_(2)and Co_(3)O_(4)–SnO_(2))utilizing Ostwald ripening.Hollow Co_(3)O_(4)-δ-MnO_(2)nano-network with the structure evolution process was systematically explored through experimental and theoretical tools,identifying the origin of hollow binary oxides due to the interfaces acting as landing sites for their growth.In addition,the structural evolution,from hollow Co_(3)O_(4)-δ-MnO_(2)to Co_(3)O_(4)-α-MnO_(2),can be observed when the time of secondary hydrothermal reaches 96 h due to the topotactic layer-to-tunnel transition process.Notably,optimized Co_(3)O_(4)-δ-MnO_(2)-48 exhibits a superior PEC degradation efficiency of 96.42%and excellent durability(20,000 min)under harsh acid conditions,attributed to the massive hollow structures'vast surface area for high intently active species.Furthermore,density functional theory simulations elucidated the Co_(3)O_(4)-δ-MnO_(2)’electron-deficient surface and high d-band center(Co_(3)O_(4)-δ-MnO_(2),-1.06;Co_(3)O_(4)-α-MnO_(2),-1.49),strengthening the interaction between the catalyst's surface and active species and prolonging the lifetime of active species ofO_(2)and 1 O_(2).This work not only demonstrates superior PEC degradation efficiency of hollow Co_(3)O_(4)-δ-MnO_(2)for practical use but also lays the cornerstone for constructing hollow binary oxides heterostructures through Ostwald ripening.
基金supported by the National Key Research and Development Program of China(2021YFC3201005,2021YFC3201000,and 2022YFC2601301)the Fundamental Research Funds for Central Public Welfare Scientific Research Institutes of China(2022YSKY-41)+1 种基金the National Nature Science Foundation of China(U1906223)The authors thank Yong Du in Yongding River Investment Co.Ltd for providing Fig.S2.Dr James Walter Voordeckers is acknowledged for assistance in English language modification.
文摘Ecological water replenishment(EWR)is an important strategy for river restoration globally,but timely evaluation of its ecological effects at a large spatiotemporal scale to further adjust the EWR schemes is of great challenge.Here,we examine the impact of EWR on microeukaryotic plankton communities in three distinct river ecosystems through environmental DNA(eDNA)metabarcoding.The three ecosystems include a long-term cut-off river,a short-term connected river after EWR,and long-term connected rivers.We analyzed community stability by investigating species composition,stochastic and deterministic dynamics interplay,and ecological network robustness.We found that EWR markedly reduced the diversity and complexity of microeukaryotic plankton,altered their community dynamics,and lessened the variation within the community.Moreover,EWR disrupted the deterministic patterns of community organization,favoring dispersal constraints,and aligning with trends observed in naturally connected rivers.The shift from an isolated to a temporarily connected river appeared to transition community structuring mechanisms from deterministic to stochastic dominance,whereas,in permanently connected rivers,both forces concurrently influenced community assembly.The ecological network in temporarily connected rivers post-EWR demonstrated significantly greater stability and intricacy compared to other river systems.This shift markedly bolstered the resilience of the ecological network.The eDNA metabarcoding insights offer a novel understanding of ecosystem resilience under EWR interventions,which could be critical in assessing the effects of river restoration projects throughout their life cycle.
基金supported by the National Natural Science Foundation of China (No. 21577009)
文摘The concentration of short-chain polychlorinated paraffins(SCCPs) in the urban air of Dalian,China was monitored from September 2016 to August 2017 with a self-developed passive sampler(PAS1) and an active high-volume sampler, simultaneously. PAS1 successfully collected the entire target SCCPs in the ambient air. Air SCCPs sampled by PAS1 were found be in the linear uptake stage during 181 days of sampling. Passive and active samples showed comparable congener profiles, and the dominant contributors of SCCPs in the two kinds of samples were similar. A significant linear correlation was observed between the total concentration of SCCPs sampled by PAS1 and active sampler in the four seasons. The passive sampling rates of the PAS1 for the gas and particulate phases of SCCPs were measured. The quantitative structure–property relationship of the sampling rate of PAS1(Rair) for gas-phase SCCPs was studied. From the molecular point of view, Rairwas mainly affected by the molecular weight and sub-cooled liquid vapor pressure of SCCPs. In general, SCCPs in the urban air of Dalian mainly existed in gas phase,lower molecular weight SCCPs primarily occurred in the gas phase, whereas higher molecular weight SCCPs were predominately adsorbed or absorbed on airborne particles. The air concentration of SCCPs in the four seasons were different, the correlation of the concentration of SCCPs in the air with the meteorology parameters was conducted. The exposure risk by intake air SCCPs of the residents around the sampling sites was evaluated according to the European risk assessment standards.